精英家教网 > 高中数学 > 题目详情
已知是椭圆的左、右焦点,弦,则的周长为        .
8

试题分析:的周长为
点评:椭圆上的点到两焦点的距离之和等于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别为F1、F2,过椭圆的右焦点F2作一条直线l交椭圆与P、Q两点,则△F1PQ内切圆面积的最大值是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的两个焦点,点在椭圆上,且,则△ 的面积为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆)经过点,其离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ) 直线交椭圆于两点,且的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知,且点A和点B都在椭圆内部,
(1)请列出有序数组的所有可能结果;
(2)记“使得成立的”为事件A,求事件A发生的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,AB是过椭圆左焦点F的一弦,C是椭圆的右焦点,已知|AB|=|AC|=4,∠BAC=90°,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在x轴上的椭圆的离心率为,则n=(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案