精英家教网 > 高中数学 > 题目详情

过椭圆C: (a>b>0)的一个焦点且垂直于x轴的直线与椭圆C交于点(,1).(1)求椭圆C的方程;(2)设过点P(4,1)的动直线与椭圆C相交于两个不同点A、B,与直线2x+y-2=0交于点Q,若,求λ+μ的值

(Ⅰ)    (Ⅱ)  


解析:

(1)由题意得 解得.

故椭圆的方程是.                                     …4分

(2)∵过点的动直线与椭圆相交于两个不同点,∴存在.

设直线的方程为.

化简得:

由△,得  ……①

满足解得 (由①可知)

得:

,∴,故

,否则此时重合,与题意不符,故.

.    …12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网分别以双曲线G:
x2
2
-
y2
2
=1
的焦点为顶点,以双曲线G的顶点为焦点作椭圆C,过椭圆C的右焦点作与x、y两轴均不垂直的直线l交椭圆于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在y轴上是否存在点N(0,n),使得(
NA
+
NB
)•
AB
=0
?若存在,求出n的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=0
,若过A,Q,F2三点的圆恰好与直线l:x-
3
y-3=0
相切.过定点M(0,2)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数λ满足
MG
MH
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0)
(1)过点A斜率
3
3
的直线l,交以A,B为焦点的双曲线于M,N两点,若线段MN的中点到y轴的距离为1,求该双曲线的方程;
(2)以A,B为顶点的椭圆经过点C(1,
3
2
),过椭圆的上顶点G作直线s,t,使s⊥t,直线s,t分别交椭圆于点P,Q(P,Q与上顶点G不重合).求证:PQ必过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线x2=4
3
y
的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)若N(
a2+1
2
,0)
为x轴上一点,求证:
AN
NE

查看答案和解析>>

科目:高中数学 来源:2009高考辽宁省数学模拟试题分类汇编:圆锥曲线 题型:044

如图,已知直线L:x=my+1过椭圆C:(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.

(1)若抛物线x2=4y的焦点为椭圆C的上顶点,求椭圆C的方程;

(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.

(文)若N()为x轴上一点,求证:

查看答案和解析>>

同步练习册答案