精英家教网 > 高中数学 > 题目详情
10.O是平面α上一点,A、B、C是平面α上不共线三点,平面α内的动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,
(1)若$λ=\frac{1}{2}$时,$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的值.
(2)若AB=1,AC=2,$\overrightarrow{AP}•\overrightarrow{BC}$=1,求λ的值.

分析 (1)当λ=$\frac{1}{2}$时,P为线段BC的中点,$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,即所求值为0;
(2)在△ABC中建立坐标系,设∠A=α,求出各点坐标,带入数量积坐标公式解出λ.

解答 解:(1)$\overrightarrow{AP}$=$\overrightarrow{OP}$-$\overrightarrow{OA}$=$λ(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)
∴点P为BC中点.
∴$\overrightarrow{PB}+\overrightarrow{PC}$=$\overrightarrow{0}$,
∴$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$=0.
(2)以AC所在直线为x轴,AC边上的高所在直线为y轴建立坐标系如图,

设∠BAC=α,则A(-cosα,0),B(0,sinα),C(2-cosα,0).
∴$\overrightarrow{BC}$=(2-cosα,-sinα),$\overrightarrow{AB}$=(cosα,sinα),$\overrightarrow{AC}$=(2,0),
∴$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$)=λ(2+cosα,sinα).
∵$\overrightarrow{AP}•\overrightarrow{BC}$=1,
∴λ[(2+cosα)(2-cosα)-sin2α]=1
即5λ=1
∴λ=$\frac{1}{5}$.

点评 本题考查了平面向量的几何运算,数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.长为a的正六边形ABCDEF在平面α内,过A点作PA⊥α,PA=a,则P到CD的距离为2a,P到BC的距离为$\frac{\sqrt{7}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合M={x|x=$\frac{kπ}{2}+\frac{π}{4}$,k∈Z},N={x|x=$\frac{kπ}{4}+\frac{π}{2}$,k∈Z},则(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:?m∈R使得函数f(x)=m•2x+1有零点;命题q:?x∈($\frac{1}{2}$,+∞),x+log2x>0,则下列命题正确的是(  )
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sin($\frac{π}{2}$+θ)=$\frac{1}{3}$,则2sin2$\frac{θ}{2}$-1等于(  )
A.$\frac{\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.±$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=2,当n≥2时,an=2an-1+3•2n-1.数列{$\frac{{a}_{n}}{{2}^{n}}$}的前n项和为Sn,则不等式Sn<20的解集为{1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当实数k为何值时,圆C1:x2+y2+4x-6y+12=0和圆C2:x2+y2-2x-14y+k=0分别相交、相切、相离?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知角α的终边与函数y=-3|x|的部分图象重合,求sinα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+mx+m+1(m>5)的两个零点分别为tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),则α+β的值为(  )
A.$\frac{π}{4}$B.-$\frac{π}{4}$C.$\frac{3}{4}π$D.-$\frac{3}{4}π$

查看答案和解析>>

同步练习册答案