【题目】已知函数,其中为自然对数的底数.
(1)讨论的单调性;
(2)当时,恒成立,求的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(2)令只需在使即可,通过讨论的范围,求出函数的单调区间,求出函数的最值,从而确定的范围即可.
解:(1)由题意可知, ,
当时,,此时在上单调递增;
当时,令,解得,
当时,,单调递减;
当时,,单调递增;
当时,令,解得,
当时,,单调递减;
当时,,单调递增;
综上,当时,在上单调递增;
当时,时,单调递减,
时单调递增;
当时,时,单调递减,
时单调递增.
(2)由,
可得,,
令,
只需在使即可,
,
①当时,,当时,,当时,,
所以在上是减函数,在上是增函数,
只需,
解得,所以;
②当时,在上是增函数,
在上是减函数,在上是增函数,
则,解得,
③当时,,在上是增函数,
而成立,
④当时,在上是增函数,
在上是减函数,在上是增函数,
则,解得.
综上,的取值范围为.
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:
年级名次/是否近视 | 1-50 | 951-1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把半椭圆与圆弧合成的曲线称作“曲圆”,其中F为半椭圆的右焦点,A是圆弧与x轴的交点,过点F的直线交“曲圆”于P,Q两点,则的周长取值范围为______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆,抛物线,过上一点异于原点作的切线l交于A,B两点,切线l交x轴于点Q.
若点P的横坐标为1,且,求p的值.
求的面积的最大值,并求证当面积取最大值时,对任意的,直线l均与一个定椭圆相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点E(﹣4,0)和F(4,0),过点E的直线l与过点F的直线m相交于点M,设直线l的斜率为k1,直线m的斜率为k2,如果k1k2.
(1)记点M形成的轨迹为曲线C,求曲线C的轨迹方程.
(2)已知P(2,m)、Q(2,﹣m)(m>0)是曲线C上的两点,A,B是曲线C上位于直线PQ两侧的动点,当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:
(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)
(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左右焦点、恰好是等轴双曲线的左右顶点,且椭圆的离心率为,是双曲线上异于顶点的任意一点,直线和与椭圆的交点分别记为、和、.
(1)求椭圆的方程;
(2)设直线、的斜率分别为、,求证:为定值;
(3)若存在点满足,试求的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com