【题目】已知函数,若方程有五个不同的实数根,则的取值范围是( )
A. B. C. D.
【答案】B
【解析】
由方程的解与函数图象的交点问题得:方程f(﹣x)=﹣f(x)有五个不同的实数根等价于y=f(x)的图象与y=g(x)的图象有5个交点,作图可知,只需y=ax与曲线y=lnx在第一象限由两个交点即可,利用导数求切线方程得:设过原点的直线与y=lnx切于点P(x0,y0),得lnx0=1,即f′(e),即过原点的直线与y=lnx相切的直线方程为yx,即所求a的取值范围为0,得解.
设g(x)=﹣f(﹣x),则y=g(x)的图象与y=f(x)的图象关于原点对称,
方程f(﹣x)=﹣f(x)有五个不同的实数根等价于函数y=f(x)的图象与y=g(x)的图象有5个交点,
由图可知,只需y=ax与曲线y=lnx在第一象限有两个交点即可,
设过原点的直线与y=lnx切于点P(x0,y0),
由f′(x),
则y=lnx的切线为y﹣lnx0(x﹣x0),
又此直线过点(0,0),
所以lnx0=1,
所以x0=e,
即f′(e),
即过原点的直线与y=lnx相切的直线方程为yx,
即所求a的取值范围为0,
故选:B.
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,,,,,后得到如图的频率分
布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在,与,两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线的参数方程为(t为参数),以原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于对称.
(1)求极坐标方程,直角坐标方程;
(2)将向左平移4个单位长度,按照变换得到与两坐标轴交于两点,为上任一点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.
(1)求抽取的5人中男、女员工的人数分别是多少;
(2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;
(3)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为,试比较与的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面四个命题:
①“直线平面内所有直线”的充要条件是“平面”;
②“直线直线”的充要条件是“平行于所在的平面”;
③“直线,为异面直线”的充分不必要条件是“直线,不相交”;
④“平面平面”的必要不充分条件是“内存在不共线三点到的距离相等”.
其中正确命题的序号是____________________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为.
(1)求椭圆的方程;
(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆于两点为圆的直径,且直线的斜率大于,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com