精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若方程有五个不同的实数根,则的取值范围是( )

A. B. C. D.

【答案】B

【解析】

由方程的解与函数图象的交点问题得:方程f(﹣x)=﹣fx)有五个不同的实数根等价于yfx)的图象与ygx)的图象有5个交点,作图可知,只需yax与曲线ylnx在第一象限由两个交点即可,利用导数求切线方程得:设过原点的直线与ylnx切于点Px0y0),得lnx01,即f′(e,即过原点的直线与ylnx相切的直线方程为yx,即所求a的取值范围为0,得解.

gx)=﹣f(﹣x),则ygx)的图象与yfx)的图象关于原点对称,

方程f(﹣x)=﹣fx)有五个不同的实数根等价于函数yfx)的图象与ygx)的图象有5个交点,

由图可知,只需yax与曲线ylnx在第一象限有两个交点即可,

设过原点的直线与ylnx切于点Px0y0),

f′(x

ylnx的切线为ylnx0xx0),

又此直线过点(00),

所以lnx01

所以x0e

f′(e

即过原点的直线与ylnx相切的直线方程为yx

即所求a的取值范围为0

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆及直线.

(1)证明:不论取什么实数,直线与圆C总相交;

(2)求直线被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体是由一个直平行六面体被平面所截后得到的,其中.

1)求证:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图的频率分

布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.

(3)若从样本中数学成绩在两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧面与底面垂直,分别是的中点,.

1)求证:平面

2)若是线段上的任意一点,求证:

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线的参数方程为(t为参数),以原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于对称.

(1)求极坐标方程,直角坐标方程;

(2)将向左平移4个单位长度,按照变换得到与两坐标轴交于两点,上任一点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有员工45人,其中男员工27人,女员工18.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.

1)求抽取的5人中男、女员工的人数分别是多少;

2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;

3)考核分笔试和答辩两项.5名员工的笔试成绩分别为7885899296;结合答辩情况,他们的考核成绩分别为958810210699.5名员工笔试成绩与考核成绩的方差分别记为,试比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面四个命题:

①“直线平面内所有直线”的充要条件是“平面”;

②“直线直线”的充要条件是“平行于所在的平面”;

③“直线为异面直线”的充分不必要条件是“直线不相交”;

④“平面平面”的必要不充分条件是“内存在不共线三点到的距离相等”.

其中正确命题的序号是____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

同步练习册答案