【题目】已知直线l:y=﹣x+1与椭圆C: =1(a>b>0))相交于不同的两点A、B,且线段AB的中点P的坐标为( , )
(1)求椭圆C离心率;
(2)设O为坐标原点,且2|OP|=|AB|,求椭圆C的方程.
【答案】
(1)解:将直线y=1﹣x代入椭圆方程,可得
(b2+a2)x2﹣2a2x+a2﹣a2b2=0,
则x1+x2= ,
由AB的中点P的坐标为( , ),可得
= ,即为a2=2b2,
可得c2=a2﹣b2= a2,
则椭圆C离心率为e= =
(2)解:由(1)可得,
△=4a4﹣4(b2+a2)(a2﹣a2b2)>0,
可得a2+b2>1,即b2> ,
x1+x2= ,x1x2= = ,
由2|OP|=|AB|,可得:
2 = ,
解得b2= (满足△>0),即有a2= ,
可得椭圆方程为 =1
【解析】(1)将直线方程代入椭圆方程,运用韦达定理和中点坐标公式,结合离心率公式计算即可得到所求值;(2)运用韦达定理和弦长公式,以及两点的距离公式,解方程即可得到a,b,进而得到椭圆方程.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求曲线在点处的切线方程;
(2)设,计算的导数.
【答案】(1).(2).
【解析】试题分析:(1)由导数的基本定义就出斜率,根据点斜式写出切线方程;(2), .
试题解析:
(1),则,
又,∴所求切线方程为,即.
(2), .
【题型】解答题
【结束】
18
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中及图中的值;
(2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE.
(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.
(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数对于任意实数,都有成立,且,当时,.
(1)判断的单调性,并加以证明;
(2)试问:当时,是否有最值?如果有,求出最值;如果没有,说明理由;
(3)解关于的不等式,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,
且当x>0时,有f(x)>1.
(1)求f(0).
(2)求证:f(x)在R上为增函数.
(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com