精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:y=﹣x+1与椭圆C: =1(a>b>0))相交于不同的两点A、B,且线段AB的中点P的坐标为(

(1)求椭圆C离心率;
(2)设O为坐标原点,且2|OP|=|AB|,求椭圆C的方程.

【答案】
(1)解:将直线y=1﹣x代入椭圆方程,可得

(b2+a2)x2﹣2a2x+a2﹣a2b2=0,

则x1+x2=

由AB的中点P的坐标为( ),可得

= ,即为a2=2b2

可得c2=a2﹣b2= a2

则椭圆C离心率为e= =


(2)解:由(1)可得,

△=4a4﹣4(b2+a2)(a2﹣a2b2)>0,

可得a2+b2>1,即b2

x1+x2= ,x1x2= =

由2|OP|=|AB|,可得:

2 =

解得b2= (满足△>0),即有a2=

可得椭圆方程为 =1


【解析】(1)将直线方程代入椭圆方程,运用韦达定理和中点坐标公式,结合离心率公式计算即可得到所求值;(2)运用韦达定理和弦长公式,以及两点的距离公式,解方程即可得到a,b,进而得到椭圆方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程

(2)设计算的导数.

【答案】(1).(2).

【解析】试题分析:(1)由导数的基本定义就出斜率,根据点斜式写出切线方程;(2) .

试题解析:

(1),则

,∴所求切线方程为.

(2) .

型】解答
束】
18

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下

1)求出表中及图中的值

2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE.

(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数对于任意实数,都有成立,且,当时,

1判断的单调性,并加以证明;

2试问:当时,是否有值?如果有,求出最值;如果没有,说明理由;

3解关于的不等式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知函数f(x)对任意的实数mn都有:f(mn)=f(m)+f(n)-1,

且当x>0时,有f(x)>1.

(1)求f(0).

(2)求证:f(x)在R上为增函数.

(3)若f(1)=2,且关于x的不等式f(ax-2)+f(xx2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案