精英家教网 > 高中数学 > 题目详情

【题目】已知为数列的前项和,的等比中项.

(1)求数列的通项公式;

(2)若为整数,,求数列的前项和.

【答案】(1);(2).

【解析】

试题分析:(1)由于,所以数列为等差数列,根据等比中项的性质列出方程,求得公差,由此求得的两个通项公式(2)由于为整数,所以,化简,故用裂项求和法求得前项和为.

试题解析:

(1)

为等差数列,.........................1分

的公差为的等比中项,........................2分

................4分

时,...........................5分

时,.....................6分

(2)若为整数,则

....................8分

,.....................10分

..............12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线轴交于点,直线轴交于点.

(1)求圆的方程

(2)求证: 为定值

(3)当取得最大值时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,底面上的一点,.

(1)证明:平面

(2)设二面角,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过作直线交椭圆于两点,使,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面

(1)求证:平面

(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品的年固定成本为250万元,每生产千件需另投入成本万元,当年产量不足80千件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为50万元,该厂生产的产品能全部售完.

(1)写出年利润万元关于(千件)的函数关系;

(2)当年产量为多少千件时该厂当年的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,点F为抛物线C1的焦点,且抛物线C1上点P处的切线与圆C2相切于点Q.

当直线PQ的方程为时,求 抛物线C1的方程;

当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1求函数的最小值及曲线在点处的切线方程;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案