已知函数,其中.
(1)若函数在上单调递增,求实数的取值范围.
(2)当时,图象上任意一点处的切线的倾斜角为,且,求a的取值范围.
解(1)f′(x)=-3x2+2ax,要使f(x)在(0,2)上单调递增,则f′(x)≥0在(0,2)上恒成立,------------2分
∵f′(x)是开口向下的抛物线,
∴,∴a≥3. ------------6分
(2)∵0≤θ≤,∴tanθ=-3x2+2ax∈[0,1].
据题意0≤-3x2+2ax≤1在(0,1]上恒成立,------------9分
由-3x2+2ax≥0,得a≥x, a≥, ------------11分
由-3x2+2ax≤1,得a≤x+.
又x+≥(当且仅当x=时取“=”),
∴a≤ .------------13分
综上,a的取值范围是≤a≤.
科目:高中数学 来源: 题型:
(09年大丰调研) (16分)
已知函数(其中) ,
点从左到右依次是函数图象上三点,且.
(Ⅰ) 证明: 函数在上是减函数;
(Ⅱ)求证:是钝角三角形;
(Ⅲ) 试问,能否是等腰三角形?若能,求面积的最大值;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年天津卷文)(12分)
已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013届浙江省杭州市萧山五校高二下期中理科数学试卷(解析版) 题型:解答题
已知函数(其中常数a,b∈R)。 是奇函数.
(Ⅰ)求的表达式;
(Ⅱ)求在区间[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省成都市高三上学期九月诊断性考试理科数学卷 题型:解答题
(本题满分12分)
已知函数其中a>0,e为自然对数的底数。
(I)求
(II)求的单调区间;
(III)求函数在区间[0,1]上的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com