精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中的导数).设,则a,b,c三者的大小关系是(   )
A.B.C.D.
B

试题分析:由题意得:对任意x∈R,都有,即f(x)=f(2-x)成立,
所以函数的对称轴为x=1,所以f(3)=f(-1).
因为当x∈(-∞,1)时,(x-1)f′(x)<0,
所以f′(x)>0,所以函数f(x)在(-∞,1)上单调递增.
因为-1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.
故选B.
点评:中档题,熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。自左向右看,函数图象上升,函数增;函数图象下降,函数减。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

 
(1)当,求的取值范围;
(2)若对任意恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)证明函数的图像关于点对称;
(2)若,求
(3)在(2)的条件下,若 为数列的前项和,若对一切都成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于的二元一次方程组有唯一一组解,则实数的取值范围是 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数上的奇函数,且的图象关于直线x=1对称,当时,      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f满足f(ab)=f(a)+ f(b),且f(2)=那么等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义中的最小值,设,则 的最大值是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是函数定义域内的一个区间,若存在,使
则称的一个“次不动点”,也称在区间上存在次不动点.若函数
在区间上存在次不动点,则实数的取值范围
      

查看答案和解析>>

同步练习册答案