精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限交于点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左、右顶点分别为,点是椭圆上的动点,且点与点不重合,直线与直线分别交于点,求证:以线段为直径的圆过定点.

【答案】(Ⅰ);(Ⅱ)证明见解析.

【解析】

(Ⅰ)将代入椭圆方程求出点纵坐标,得到,且等于,再由离心率和关系,即可求解;

(Ⅱ)设点,求出线的斜率,由点的椭圆上,得到为定值,分别求出坐标,证明即可.

(Ⅰ)代入椭圆方程得

,得

又因为

所以椭圆的方程为.

(Ⅱ)设点

又设直线的斜率分别为

所以

∴直线,直线

所以点

所以以线段为直径的圆过定点

同理,以线段为直径的圆过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角三角形所在的平面与半圆弧所在平面相交于,,分别为,的中点, 上异于,的点, .

1)证明:平面平面;

2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)求曲线的普通方程及直线的直角坐标方程;

2)求曲线上的点到直线的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

1)若抛物线的焦点到准线的距离为4,点在抛物线上,线段的中点为,求直线的方程;

2)若圆以原点为圆心,1为半径,直线分别相切,切点分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求实数的值.

2)若,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点按照逆时针方向排列,点的极坐标为.

(Ⅰ)求点的直角坐标;

(Ⅱ)设上任意一点,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,为常数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)当直线与曲线相切时,求出常数的值;

2)当为曲线上的点,求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.

根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;

用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布

估计该市居民月平均用电量介于度之间的概率;

利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率相等.椭圆的右焦点为F,过点F的直线与椭圆交于AB两点,射线与椭圆交于点C,椭圆的右顶点为D

1)求椭圆的标准方程;

2)若的面积为,求直线的方程;

3)若,求证:四边形是平行四边形.

查看答案和解析>>

同步练习册答案