精英家教网 > 高中数学 > 题目详情

【题目】“0≤a≤4”是“实系数一元二次方程x2+ax+a=0无实根”的(
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件

【答案】A
【解析】“实系数一元二次方程x2+ax+a=0无实根”△=a2﹣4a<00<a<4 ∴若“0≤a≤4”成立,“0<a<4”不一定成立
反之,若“0<a<4”成立,“0≤a≤4”一定成立
所以“0≤a≤4”是“实系数一元二次方程x2+ax+a=0无实根”的必要不充分条件.
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=2sinx﹣1的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为(
A.(﹣∞,0)∪(1,+∞)
B.(﹣6,0)∪(1,3)
C.(﹣∞,1)∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程|2x﹣a|=1有两个不相等的实数解,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax4+5(a>0,a≠1)的图象必经过定点(
A.(0,5)
B.(4,5)
C.(3,4)
D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={0,1},B={﹣1,0,a+3},且AB,则a等于(
A.1
B.0
C.﹣2
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】k是什么实数时,方程x2﹣(2k+3)x+3k2+1=0有实数根?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:有一个素数含有三个正因数,则¬p为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2|xm|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a

查看答案和解析>>

同步练习册答案