精英家教网 > 高中数学 > 题目详情

【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:

质量指标检测分数

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班组生产的产品件数

7

18

40

29

6

乙班组生产的产品件数

8

12

40

32

8

(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;

(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?

甲班组

乙班组

合计

合格品

次品

合计

(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

【答案】(1)甲:,乙:;(2)没有95%的把握认为此种产品的产品质量与生产产品的班组有关;(3)事件A发生的可能性大一些

【解析】

(1)直接计算甲班组和乙班组产品的不合格率;(2)利用独立性检验求得没有95%的把握认为此种产品的产品质量与生产产品的班组有关;(3)利用古典概型的概率公式求出P(A)和P(B),再比较大小即得解.

(1)根据表中数据,甲班组生产该产品的不合格率为

乙班组生产该产品的不合格率为

(2)列联表如下:

甲班组

乙班组

合计

合格品

75

80

155

次品

25

20

45

合计

100

100

200

所以,没有95%的把握认为此种产品的产品质量与生产产品的班组有关.

(3)由题意,若按合格与不合格的比例,则抽取了4件甲班组产品,5件乙班组产品,其中甲、乙班组抽取的产品中均含有1件次品,设这4件甲班组产品分别为A1,A2,A3,D,其中A1,A2,A3代表合格品,D代表次品,从中随机抽取2件,则所有可能的情况为A1A2,A1A3,A1D,A2A3,A2D,A3D共6种,A事件包含3种,故;设这5件乙班组产品分别为B1,B2,B3,B4,E,其中B1,B2,B3,B4代表合格品,E代表次品,从中随机抽取2件,则所有可能的情况为B1B2,B1B3,B1B4,B1E,B2B3,B2B4,B2E,B3B4,B3E,B4E共10种,B事件包含4种,故

因为P(A)>P(B),所以,事件A发生的可能性大一些.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车在行驶中,由于惯性,刹车后还要继续向前滑行一段距离才能停止,一般称这段距离为刹车距离”.刹车距离是分析交通事故的一个重要依据.在一个限速为的弯道上,甲、乙两辆汽车相向而行,突然发现有危险情况,同时紧急刹车,但还是发生了交通事故.事后现场勘查,测得甲车的刹车距离略超过,乙车的刹车距离略超过.已知甲、乙两种车型的刹车距离与车速之间的关系分别为:.根据以上信息判断:在这起交通事故中,应负主要责任的可能是_______________车,理由是__________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,点在椭圆.

1)求椭圆的方程;

2)圆是以椭圆的焦距为直径的圆,点是椭圆的右顶点,过点的直线与圆相交于两点,过点的直线与椭圆相交于另一点,若,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(无理数

(1)若单调递增,求实数的取值范围;

(2)当时,设函数,证明:当时,.(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论函数的单调性;

2)若有两个极值点,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球O为三棱锥SABC的外接球, ,则球O的表面积是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形,且,点是线段的中点,过的平面交平面,且,且.

1)求证:

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,过作直线,若直线与平面中的直线所成角的最小值为,且直线与直线所成角为,则满足条件的直线的条数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的对称轴为坐标轴,焦点在轴上,离心率为,且经过点.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,且,若原点在以为直径的圆外,求的取值范围.

查看答案和解析>>

同步练习册答案