【题目】设数列的前项和为,且.
(1)求证:数列为等比数列;
(2)设数列的前项和为,求证: 为定值;
(3)判断数列中是否存在三项成等差数列,并证明你的结论.
科目:高中数学 来源: 题型:
【题目】定义在(﹣1,1)上的函数f(x)满足: ,当x∈(﹣1,0)时,有f(x)>0,且 .设 ,则实数m与﹣1的大小关系为( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(log4x)>2的x的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 , 且存在 满足 ,令函数 ,试判断 零点的个数并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c.三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示:A>a>B>b>C>c. (Ⅰ)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;
(Ⅱ)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马.那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com