分析:(1)利用数学归纳法的证题步骤分当n=1时证明等式成立,假设当n=k时等式成立,去证明当n=k+1时等式也成立即可;
(2)当n=1时,证明左边
与右边
相等,假设n=k时等式成立,去证明当n=k+1时等式也成立即可.
解答:证明:(1)①当n=1时,左边=3×1-2=1,右边
×1(3×1-1)=1,左边=右边,等式成立;
②假设当n=k时等式成立,即1+4+7+…+(3k-2)=
k(3k-1),
则当n=k+1时,
1+4+7+…+(3k-2)+[3(k+1)-2]
=
k(3k-1)+[3(k+1)-2]
=
(3k
2+5k+2)
=
(k+1)(3k+2)
=
(k+1)[3(k+1)-1],
即n=k+1时,等式也成立;
综合①②知,对任意n∈N
*,等式成立.
(2)证明:①当n=1时,证明左边=
,右边=
,左边=右边,等式成立;
②假设当n=k时等式成立,即
+
+…+
=
,
则当n=k+1时,
+
+…+
+
=
+
=
k(2k+3)+1 |
[2(k+1)-1][2(k+1)+1] |
=
(k+1)(2k+1) |
[2(k+1)-1][2(k+1)+1] |
=
=
,
即当n=k+1时,等式也成立;
综上知,对任意n∈N
*,等式
+
+…+
=
恒成立.
点评:本题考查数学归纳法,着重考查利用数学归纳法证明问题,考查推理与逻辑思维能力,属于中档题.