精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点,P为双曲线 ﹣y2=1(a>0)上一点,过P作两条渐近线的平行线交点分别为A,B,若平行四边形OAPB的面积为 ,则双曲线的离心率为( )

A.
B.
C.
D.

【答案】D
【解析】解:渐近线方程是:x±ay=0,设P(m,n)是双曲线上任一点,
过P平行于OA:x+ay=0的方程是:x+ay﹣m﹣an=0与OB方程:x﹣ay=0交点是B( ),
|OB|=| | ,P点到OB的距离是:d=
∵平行四边形OAPB的面积为
∴|OB|d=
∴| | =
=
,∴ =1,
即m2﹣a2n2=a2 , 代入得
∴a= ,∴c=2,
∴e= =
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市电力公司为了制定节电方案,需要了解居民用电情况通过随机抽样,电力公司获得了50户居民的月平均用电量,分为六组制出频率分布表和频率分布直方图如图所示).

(1)求ab的值;

(2)为了解用电量较大的用户用电情况,在第5、6两组用分层抽样的方法选取5

求第5、6两组各取多少户?

若再从这5户中随机选出2户进行入户了解用电情况,求这2户中至少有一户月平均用电量在[1000,1200]范围内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足 ,则目标函数2x+y的最大值为 , 目标函数4x2+y2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方

(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有两个关于“袋子中装有红、白两种颜色的相同小球,从袋中无放回地取球”的游戏规则,这两个游戏规则公平吗?为什么?

游 戏 1

游 戏 2

2个红球和2个白球

3个红球和1个白球

取1个球,再取1个球

取1个球,再取1个球

取出的两个球同色→甲胜

取出的两个球同色→甲胜

取出的两个球不同色→乙胜

取出的两个球不同色→乙胜

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为.过定点的直线交椭圆于不同的两点 (点在点 之间).

(Ⅰ)求椭圆的方程;

(Ⅱ)若,求实数的取值范围;

Ⅲ)若射线交椭圆于点为原点),求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,点E为线段PC的中点,点F在线段AB上.

(1)若AF= ,求证:CD⊥EF;
(2)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自平面上一点O引两条射线OA,OB,P在OA上运动,Q在OB上运动且保持| |为定值2 (P,Q不与O重合).已知∠AOB=120°,
(I)PQ的中点M的轨迹是的一部分(不需写具体方程);
(II)N是线段PQ上任﹣点,若|OM|=1,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆的方程为,过点的直线与圆交于点,与轴交于点,设,求证:为定值.

查看答案和解析>>

同步练习册答案