精英家教网 > 高中数学 > 题目详情

【题目】欧拉公式为虚数单位,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

【答案】B

【解析】

利用欧拉公式和诱导公式进行计算即可得出答案

e2018i=cos2018+isin2018,

∵2018=642π+(2018﹣642π),2018﹣642π∈

∴cos2018=cos(2018﹣642π)<0.

sin2018=sin(2018﹣642π)>0,

e2018i表示的复数在复平面中位于第二象限.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的图象关于原点对称,其中a为常数.

1)求a的值,并写出函数fx)的单调区间(不需要求解过程);

2)若关于x的方程在[23]上有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点分别为,直线轴于点,且

(1)求椭圆的方程;

(2)过 分别作互相垂直的两直线,与椭圆分别交于D、EM、N四点, 求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是两个不同的平面,则下列四个命题:

①若,则②若,则

③若,则④若,则

其中正确的命题序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定函数,若存在实数对,使得对定义域内的所有恒成立,则称为“函数”.

1)判断函数是不是“函数”;

2)若是一个“函数”,求所有满足条件的有序实数对

3)若定义域为的函数为“函数”,且存在满足条件的有序实数对,当时,函数的值域为,求当, 函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆以坐标原点为中心,焦点在轴上,焦距为2,且经过点.

(1)求椭圆的方程;

(2)设点,点为曲线上任一点,求点到点距离的最大值

(3)在(2)的条件下,当时,设的面积为O是坐标原点,Q是曲线C上横坐标为a的点),以为边长的正方形的面积为,若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若两条直线与同一条直线所成的角相等,则这两条直线平行

B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C.若一条直线分别平行于两个相交平面,则一定平行它们的交线

D.若两个平面都平行于同一条直线,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数)

(1)若,当时,试比较2的大小;

(2)若函数有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球的体积为________

查看答案和解析>>

同步练习册答案