精英家教网 > 高中数学 > 题目详情

【题目】在一次水下考古活动中,某一潜水员需潜水米到水底进行考古作业.其用氧量包含一下三个方面:下潜平均速度为/分钟,每分钟用氧量为升;水底作业时间范围是最少分钟最多分钟,每分钟用氧量为升;返回水面时,平均速度为/分钟,每分钟用氧量为.潜水员在此次考古活动中的总用氧量为.

1)如果水底作业时间是分钟,将表示为的函数;

2)若,水底作业时间为分钟,求总用氧量的取值范围;

3)若潜水员携带氧气升,请问潜水员最多在水下多少分钟(结果取整数)?

【答案】(1);(2);(3).

【解析】

试题分析:(1)通过速度、时间与路程之间的关系可知下潜所需时间为分钟、返回所需时间为分钟,进而列式可得结论;(2)由(1)知,由对勾函数的单调性可得的取值范围是;(3)由题意知潜水与返回最少要用升氧气,可得在水下时间最长为.

试题解析:(1)依题意下潜时间分钟,返回时间分钟,

整理得.

2)由(1)同理得

函数在是减函数,是增函数

,当

所以总用氧量的取值范围是.

3)潜水员在潜水与返回最少要用升氧气,则在水下时间最长为分钟

所以潜水员最多在水下分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若在区间上具有相同的单调性,求实数的取值范围;

(2)若,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 是线段上一点.

点.

(1)确定的位置,使得平面平面

(2)若平面,设二面角的大小为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数.

(1)当函数的图象在点处的切线的斜率为1时,求函数上的最小值; (2)若函数在区间上既有极大值又有极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点是抛物线的焦点,在第一象限内的交点,且.

(1)求的方程;

(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的一种产品的广告费用 (单位:万元)与销售额 (单位:万元)的统计数据如下表:

广告费用

销售额

(1)根据上述数据,求出销售额(万元)关于广告费用(万元)的线性回归方程;

(2)如果企业要求该产品的销售额不少于万元,则投入的广告费用应不少于多少万元?

(参考数值: .

回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是 ( )

A. 上各点的横坐标缩短到原来的倍, 纵坐标不变,再把得到的曲线向左平移个单位长度, 得到曲线

B. 上各点的横坐标缩短到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C. 上各点的横坐标伸长到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当为何值时, 最小? 此时的位置关系如何?

(2)当为何值时, 的夹角最小? 此时的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线)交于两点.

1)当时,分别求在点处的切线方程;

2轴上是否存在点,使得当变动时,总有?说明理由.

查看答案和解析>>

同步练习册答案