精英家教网 > 高中数学 > 题目详情

已知椭圆C=1(ab>0)的离心率为,一条准线lx=2.
(1)求椭圆C的方程;
(2)设O为坐标原点,Ml上的点,F为椭圆C的右焦点,过点FOM的垂线与以OM为直径的圆D交于PQ两点.
①若PQ,求圆D的方程;
②若Ml上的动点,求证点P在定圆上,并求该定圆的方程.

(1) y2=1 (2)①(x-1)2+(y-1)2=2或(x-1)2+(y+1)2=2②点P在定圆x2y2=2上

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.
(1)求椭圆的标准方程.
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率相等. 直线与曲线交于两点(的左侧),与曲线交于两点(的左侧),为坐标原点,
(1)当=时,求椭圆的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得··?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆,的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .
(1)证明: 成等比数列;
(2)若的坐标为,求椭圆的方程;
(3)在(2)的椭圆中,过的直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点.
(1)若是第一象限内该椭圆上的一点,,求点的坐标;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其
为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆,两点, 到直线的距离为,连结椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)过椭圆的左顶点作直线交椭圆于另一点, 若点是线段垂直平分线上的一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形F1B1 F2B2是一个面积为8的正方形.

(1)求椭圆C的方程;
(2)已知点P的坐标为P(-4,0), 过P点的直线L与椭圆C相交于M、N两点,当线段MN的中点G落在正方形内(包含边界)时,求直线L的斜率的取值范围.

查看答案和解析>>

同步练习册答案