精英家教网 > 高中数学 > 题目详情
1.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PB=PC=PD.
(1)证明:PA⊥平面ABCD;
(2)若PA=2,求二面角A-PD-B的余弦值.

分析 (1)连接AC,取BC中点E,连接AE,PE,推导出BC⊥AE,BC⊥PE,从而BC⊥PA.同理CD⊥PA,由此能证明PA⊥平面ABCD.
(2)以A为原点,建立空间直角坐标系A-xyz,利用向量法能求出二面角A-PD-B的余弦值.

解答 证明:(1)连接AC,则△ABC和△ACD都是正三角形.
取BC中点E,连接AE,PE,
因为E为BC的中点,所以在△ABC中,BC⊥AE,
因为PB=PC,所以BC⊥PE,
又因为PE∩AE=E,所以BC⊥平面PAE,
又PA?平面PAE,所以BC⊥PA.
同理CD⊥PA,
又因为BC∩CD=C,所以PA⊥平面ABCD.…6
解:(2)如图,以A为原点,建立空间直角坐标系A-xyz,
则B($\sqrt{3}$,-1,0),D(0,2,0),P(0,0,2),
$\overrightarrow{PD}$=(0,2,-2),$\overrightarrow{BD}$=(-$\sqrt{3}$,3,0),
设平面PBD的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{PD}•\overrightarrow{m}=2y-2z=0}\\{\overrightarrow{BD}•\overrightarrow{m}=-\sqrt{3}x+3y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},1,1$),
取平面PAD的法向量$\overrightarrow{n}$=(1,0,0),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{15}}{5}$,
所以二面角A-PD-B的余弦值是$\frac{\sqrt{15}}{5}$.…(12分)

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知直线l1:kx-y+4=0与直线l2:x+ky-3=0(k≠0)分别过定点A、B,又l1、l2相交于点M,则|MA|•|MB|的最大值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{{2sin({π-θ})+sin2θ}}{{{{cos}^2}\frac{θ}{2}}}$=4sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆M:(x-a)2+y2=4(a>0)与圆N:x2+(y-1)2=1外切,则直线x-y-$\sqrt{2}$=0被圆M截得线段的长度为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年双十一期间,某电子产品销售商促销某种电子产品,该产品的成本为2元/件,通过市场分析,双十一期间该电子产品销售量y(单位:千件)与销售价格x(单位:元)之间满足关系式:y=$\frac{a}{x-2}$+2x2-35x+170(其中2<x<8,a为常数),且已知当销售价格为3元/件时,该电子产品销售量为89千件.
(Ⅰ)求实数a的值及双十一期间销售该电子产品获得的总利润L(x);
(Ⅱ)销售价格x为多少时,所获得的总利润L(x)最大?并求出总利润L(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分条件
C.“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有一个电动玩具,它有一个9×6的长方形(单位:cm)和一个半径为1cm的小圆盘(盘中娃娃脸),他们的连接点为A,E,打开电源,小圆盘沿着长方形内壁,从点A出发不停地滚动(无滑动),如图所示,若此时某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为$\frac{40+π}{54}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义在区间(-1,1)内,对于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.成书于公元五世纪的《张邱建算经》是中国古代数学史上的杰作,该书中记载有很多数列问题,如“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈. 问日益几何.”意思是:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加(  )(其中1匹=4丈,1丈=10尺,1尺=10寸)
A.5寸另$\frac{15}{29}$寸B.5寸另$\frac{5}{14}$寸C.5寸另$\frac{5}{9}$寸D.5寸另$\frac{1}{3}$寸

查看答案和解析>>

同步练习册答案