精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆+=1的焦点分别是 是椭圆上一点,若连结三点恰好能构成直角三角形,则点轴的距离是( )

A. B. C. D.

【答案】A

【解析】椭圆+=1的焦点在轴上,且为,且,第一种情况,两焦点连线段为直角边,则点纵坐标为,则令代入椭圆方程,可得轴距离为,第二种情况,两焦点连线段为斜边,设,则

即为联立椭圆方程+=1则无解,故点到到轴距离为,故选A.

【方法点晴】本题主要考查利用椭圆的方程以及椭圆的简单性质,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、离心率等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆在椭圆椭圆的四个顶点的连线构成的四边形的面积为

1)求椭圆的方程

2)设点为椭圆长轴的左端点 为椭圆上异于椭圆长轴端点的两点记直线斜率分别为请判断直线是否过定点若过定点求该定点坐标若不过定点请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知圆O1与圆O2相交于A,B两点,过点A作圆O1的切线交圆O2于点C,过点B作两圆的割线,分别交圆O1 , 圆O2于点D,E,DE与AC相交于点P.

(1)求证:AD∥EC;
(2)若AD是圆O2的切线,且PA=3,PC=1,AD=6,求DB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)在公比为2的等比数列{an}中,a2与a5的等差中项是9 .求a1的值;
(2)若函数y=a1sin( φ),0<φ<π的一部分图象如图所示,M(﹣1,a1),N(3,﹣a1)为图象上的两点,设∠MON=θ,其中O为坐标原点,0<θ<π,求cos(θ﹣φ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有两个不相同的零点,求实数的值;

(2)记为函数的所有零点之和,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种出口产品的关税税率,市场价格(单位:千元)与市场供应量(单位:万件)之间近似满足关系式:,其中均为常数.当关税税率为时,若市场价格为5千元,则市场供应量约为1万件;当关税税率为时,若市场价格为7千元,则市场供应量约为2万件.

(1)试确定的值;

(2)市场需求量(单位:万件)与市场价格近似满足关系式:.当时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上减函数;

(2) 若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)若一个函数定义域的奇函数,当时,,则当x<0时,其中正确的是____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求证:AB1⊥CC1
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)若ax>lnx恒成立,求实数a的取值范围;
(2)证明:a>0,x0∈R,使得当x>x0时,ax>lnx恒成立.

查看答案和解析>>

同步练习册答案