精英家教网 > 高中数学 > 题目详情

【题目】如图,函数轴交于两点,点在抛物线上(点在第一象限),.记,梯形面积为

求面积为自变量的函数解析式;

其中为常数且的最大值.

【答案】 ;(II时, 的最大值为 时, 的最大值为

【解析】试题分析:根据题意设点C的横坐标为x,点C在抛物线上,求出点C的纵坐标,根据抛物线的对称性得出点D的坐标,利用抛物线方程求出点AB的坐标,从而借助梯形面积公式表示面积S,写出定义域要求;对函数求导,注意定义域,对参数的不同情况进行讨论,求出面积的最大值.

试题解析:

(Ⅰ)依题意点的横坐标为的纵坐标为

的横坐标满足方程解得

所以

由点在第一象限,得

所以关于的函数式为

(Ⅱ)记

,得

,即时, 的变化情况如下:

极大值

所以,当时, 取得最大值,且最大值为

,即时, 恒成立,

所以, 的最大值为

综上, 时, 的最大值为 时, 的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足:

(1)求数列的通项公式;

(2)若数列的前项和为 , 成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=
(1)求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a、b∈(B∩RA)时,证明: |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线 的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a等于(
A.
B.
C.3
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R, ,B={x|log3x≤2}. (Ⅰ)求A∩B;
(Ⅱ)求U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案