【题目】在多面体中,四边形与是边长均为的正方形,四边形是直角梯形,,且.
(1)求证:平面平面;
(2)若,求四棱锥的体积.
【答案】(1)详见解析(2)
【解析】
试题分析:(1)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明往往利用线面垂直判定定理给予证明,即从线线垂直出发给予证明,而线线垂直,往往需要从两方面进行寻找与论证,一是结合平几知识,本题利用勾股定理证得,二是利用线面垂直性质定理,即先由线线垂直得线面垂直平面,而,则平面,因此可得,最后根据线面垂直判定定理得平面,(2)求四棱锥的体积,关键是求高,而高的寻找依赖于线面垂直:过作于,则易证过作,即为高,最后根据体积公式得体积
试题解析:
(1)证明:连接,由可知:
;,
可得,从而.......................3分
∵,∴平面,
又∵,∴平面,∴,∴平面,
∵平面,∴平面平面................6分
(2)
过作的平行线交于的延长线于点,连接交于点,
过作于,
则,.................8分
可得四边形的面积,....................10分
故...............12分
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A已知直线的参数方程为(为参数),在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆的方程为
(1)求圆的圆心的极坐标;
(2)判断直线与圆的位置关系.
已知不等式的解集为
(1)求实数的值;
(2)若不等式对恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都是正数的数列的前项和为,,
(1)求数列的通项公式;
(2)设数列满足:,,数列的前项和,求证:;
(3)若对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①对立事件一定是互斥事件;
②函数的最小值为2;
③八位二进制数能表示的最大十进制数为256;
④在中,若, , ,则该三角形有两解.
其中正确命题的个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的离心率为,短轴的一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年3月的“两会”上,李克强总理在政府工作报告中,首次提出“倡导全民阅读”,某学校响应政府倡导,在学生中发起读书热潮.现统计了从2014年下半年以来,学生每半年人均读书量,如下表:
时间 | 2014年下半年 | 2015年上半年 | 2015年下半年 | 2016年上半年 | 2016年下半年 |
时间代号 | |||||
人均读书量(本) |
根据散点图,可以判断出人均读书量与时间代号具有线性相关关系.
(1)求关于的回归方程;
(2)根据所求的回归方程,预测该校2017年上半年的人均读书量.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com