【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的直角坐标方程并指出其形状;
(2)设是曲线上的动点,求的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)直接根据极坐标和直角坐标方程互化公式求解得到其直角坐标方程,然后,再将其化为标准方程即可判断其形状;(2)依据曲线的参数方程,可以设该点的三角形式 ,然后 ,借助于三角函数的有界性求最值.
试题解析:(1)由ρ2-4ρcos+7=0可得ρ2-4ρcosθ-4ρsinθ+7=0,化为直角坐标方程得x2+y2-4x-4y+7=0,即(x-2)2+(y-2)2=1,它表示以(2,2)为圆心,以1为半径的圆.
(2)由题意可设x=2+cosθ,y=2+sinθ,则t=(x+1)(y+1)=(3+cosθ)(3+sinθ)=9+3(sinθ+cosθ)+sinθcosθ.
令sinθ+cosθ=m,平方可得1+2sinθcosθ=m2,
所以sinθcosθ=,t=9+3m+=m2+3m+(-≤m≤).由二次函数的图象可知t的取值范围为.
科目:高中数学 来源: 题型:
【题目】设函数,已知在处的切线相同.
(1)求的值及切线的方程;
(2)设函数,若存在实数使得关于的不等式对上的任意实数恒成立,求的最小值及对应的的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元,每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(Ⅰ)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;
(Ⅱ)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个盒子里装有6张卡片,上面分别写着如下定义域为的函数:
,,,,,.
(1)现在从盒子中任意取两张卡片,记事件为“这两张卡片上函数相加,所得新函数是奇函数”,求事件的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若<<0,则下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正确的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.
(i)记“”为事件,求事件的概率;
(ii)在区间内任取2个实数,求事件“恒成立”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com