分析 依题意可知|PO|=$\frac{1}{2}$|F1F2|判断出∠F1PF2=90°,直线OP的斜率为$\sqrt{3}$,可求出出|PF2|=$\sqrt{3}$c,则|F1P|=c,进而利用双曲线定义可用c表示出a,最后可求得双曲线的离心率.
解答 解:∵|PO|=$\frac{1}{2}$|F1F2|,
∴|OF1|=|OF2|=|OP|
∴∠F1PF2=90°,
∵直线OP的斜率为$\sqrt{3}$,
∴∠POF1=60°,
∴|PF1|=c,|PF2|=$\sqrt{3}$c,
∴$\sqrt{3}$c-c=2a,
∴$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1
∴e=$\sqrt{3}$+1.
故答案为:$\sqrt{3}$+1
点评 本题主要考查了双曲线的简单性质,考查了学生对双曲线定义的理解和灵活运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{3}$,1) | B. | [$\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | (0,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 13π | B. | 14π | C. | 15π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com