已知函数f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
(1)[0,1](2)存在m=4,
【解析】∵f(0)=1,∴f(0)=c·e0=c=1,
又f(1)=(a+b+1)·e1=0,∴a+b+1=0,
∴b=-1-a,∴f(x)=[ax2-(1+a)x+1]·ex.
∴f′(x)=[ax2+(a-1)x-a]ex.
(1)∵函数f(x)在区间[0,1]上单调递减,∴对任意x∈[0,1],有f′(x)≤0,即对任意x∈[0,1],有ax2+(a-1)x-a≤0,令g(x)=ax2+(a-1)x-a.当a>0时,因为二次函数g(x)=ax2+(a-1)x-a的图象开口向上,而g(0)=-a<0,所以需g(1)=a-1≤0,即0<a≤1,当a=0时,对任意x∈[0,1],g(x)=-x≤0成立,符合条件,当a<0时,因为g(0)=-a>0,不符合条件.
故a的取值范围是[0,1].
(2)当a=0时,f(x)=(1-x)ex,假设存在实数m,使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立.
由mx+1≥-x2+4x+1,得x2+(m-4)x≥0对x∈R恒成立.
∴Δ=(m-4)2≤0,∴m=4.
下面证明:当m=4时,2f(x)+4xex≥mx+1对x∈R恒成立.
即(2x+2)ex-4x-1≥0,对x∈R恒成立.
令g(x)=(2x+2)ex-4x-1,g′(x)=(2x+4)ex-4
∵g′(0)=0.
当x>0时,(2x+4)>4,ex>1,∴(2x+4)ex>4,g′(x)>0,∴g(x)在(0,+∞)上单调递增.
当x<0时,(2x+4)<4,0<ex<1,
∴(2x+4)ex<4ex<4,g′(x)<0,
∴g(x)在(-∞,0)上单调递减.
∴g(x)min=g(0)=2-1=1>0,
∴g(x)>0,即(2x+2)ex>4x+1对x∈R恒成立,
∴存在m=4,使2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练倒数第10天练习卷(解析版) 题型:选择题
设i为虚数单位,复数z1=1+i,z2=2i-1,则复数1·z2在复平面上对应的点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练3-x4练习卷(解析版) 题型:选择题
在等比数列{an}中,a5·a11=3,a3+a13=4,则=( ).
A.3 B. C.3或 D.-3或-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练3-x1练习卷(解析版) 题型:选择题
已知x,y满足则z=2x+4y的最小值为( ).
A.5 B.-5 C.6 D.-6
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练3-d4练习卷(解析版) 题型:解答题
已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2x+y-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练3-d3练习卷(解析版) 题型:解答题
已知函数f(x)=sin xcos x+cos 2x-,△ABC三个内角A,B,C的对边分别为a,b,c,且f(B)=1.
(1)求角B的大小;
(2)若a=,b=1,求c的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练2-1练习卷(解析版) 题型:解答题
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f=3,且a=2,b+c=4,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练1-9练习卷(解析版) 题型:选择题
若抛物线y2=8x上的点(x0,y0)到抛物线焦点的距离为3,则|y0|=( ).
A. B. 2 C.2 D.4
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练1-7练习卷(解析版) 题型:选择题
若正数x,y满足x+3y=5xy,则3x+4y的最小值是( ).
A. B. C.5 D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com