精英家教网 > 高中数学 > 题目详情
2.已知:关于x的不等式x2+ax+b<0的解集为(1,2).求:关于x的不等式bx2+ax+1>0的解集.

分析 根据不等式x2+ax+b<0的解集求出a、b的值,再代入不等式bx2+ax+1>0求解集.

解答 解:∵关于x的不等式x2+ax+b<0的解集为(1,2),
∴1,2是方程x2+ax+b=0的两个实数根,
∴$\left\{\begin{array}{l}{1+2=-a}\\{1×2=b}\end{array}\right.$,
解得a=-3,b=2;
∴bx2+ax+1>0可化为2x2-3x+1>0,
分解因式为(2x-1)(x-1)>0,
解得x<$\frac{1}{2}$或x>1;
∴不等式bx2+ax+1>0的解集为(-∞,$\frac{1}{2}$)∪(1,+∞).

点评 本题考查了一元二次不等式的解集与相应的一元二次方程的实数根的关系应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos2$\frac{x}{2}$+sinx+sin2x(x∈R).
(1)求函数f(x)的最大值,并求此时x的值;
(2)已知△ABC中,内角A,B,C的对边分别为a,b,c,若f(A+$\frac{π}{4}$)=2且a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,A(2,1),B(3,-2),C(-3,1),边BC上的高为AD,求点D的坐标及|$\overrightarrow{AD}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点A(4,-a)和点B(6,b)的直线与直线y=-x+m垂直,则以AB为直径的圆的方程可以是(  )
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一圆与y轴相切,且在直线y=x上截得的弦AB=2$\sqrt{7}$,圆心在直线x-3y=0上,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线ax+by=1与圆x2+y2=$\frac{1}{4}$相交于不同的A,B两点(其中a,b是实数),且|AB|<$\frac{\sqrt{2}}{2}$,则a2+b2-2a的取值范围为(  )
A.(1,10+4$\sqrt{2}$)B.(1,6+3$\sqrt{2}$)C.(0,6+3$\sqrt{2}$)D.(0,8+4$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}•\overrightarrow{b}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C的圆心坐标为(0,1),且与x轴相交的弦长为4,直线l:mx-y+1-m=0.
(Ⅰ)证明:对任意实数m,直线l与定圆C总有两个交点;
(Ⅱ)设直线l与圆C交于A,B两点,定点P(1,1)满足2$\overrightarrow{AP}$=$\overrightarrow{PB}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$右焦点为F,又椭圆与x轴正半轴交于A点,与y轴正半轴交于点B(0,2),且$\overline{BF}•\overline{BA}=4\sqrt{2}+4$,过点D(4,0)作直线l交椭圆于不同的两点P,Q.
(1)求椭圆的方程;
(2)若在x轴上的点M(m,0),使$|{\overline{MP}}|=|{\overline{MQ}}|$,求m的取值范围.

查看答案和解析>>

同步练习册答案