精英家教网 > 高中数学 > 题目详情
已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
an
(an+1)(an+1+1)
,其数列{bn}的前n项和Tn,并解不等式Tn
127
390
(1)∵递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项,
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
a1q2=8
a1q+a1q3=20

解得a1=2,q=2,或a1=32,q=
1
2
(舍),
an=2n
(2)bn=
an
(an+1)(an+1+1)

=
2n
(2n+1)(2n+1+1)

=
1
2n+1
-
1
2n+1+1

∴Tn=
1
2+1
-
1
22+1
+
1
22+1
-
1
23-1
+…+
1
2n-1+1
-
1
2n+1
+
1
2n+1
-
1
2n+1+1

=
1
2+1
-
1
2n+1+1

=
1
3
-
1
2n+1+1

∵Tn
127
390

1
3
-
1
2n+1+1
127
130
,∴2n+1<129,解得n≤6,
∴不等式Tn
127
390
的解集为{1,2,3,4,5,6}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设递增等比数列{an}的前n项和为Sn,且a2=3,S3=13,数列{bn}满足b1=a1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
bn
an
,数列{cn}的前n项和Tn,若Tn>2a-1恒成立(n∈N*),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{ an}的前n项和为Sn=n2-5n+2,则数列{|an|}的前10项和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an},an≠0,a1=
5
6
,若以an-1,an为系数的二次方程:an-1x2+anx-1=0(n≥2,n∈N*)都有两个不同的根α,β满足3α-αβ+3β+1=0
(1)求证:{an-
1
2
}
为等比数列;
(2)求{an}的通项公式并求前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个等比数列的前n项之和是2n-b,那么它的前n项的各项平方之和为(  )
A.(2n-1)2B.
1
3
(2n-1)
C.4n-1D.
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}为等差数列,Sn为前n项和,且S3=9,S8=64.
(Ⅰ)求数列{an}通项公式;
(Ⅱ)令bn=an(
1
2
)n
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{nSn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+···+anbn=n·2n+3
(1)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn
(2)若a1=8.
①求数列{an}与{bn}的通项公式;
②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案