精英家教网 > 高中数学 > 题目详情
函数f(x)=x3+mx2+nx(m>0)在x=1处取到极值:f′(x)的最小值为-4.
(1)求m、n的值及f(x)的单调区间;
(2)试分别求方程f(x)-c=0在区间[-4,1]上有一根;有两根时C的范围.
【答案】分析:(1)先由导数知识求出f′(x),然后利用配方法把二次函数f′(x)表示成顶点式,再根据g(x) 在x=1处取得极值,f′(x)的最小值为-4可列方程组求得m、n的值,代入f′(x)中,即可求得f(x)的单调区间;(2)由(1)可知函数f(x)在区间[-4,1]的图象变化情况,根据函数图象即可求得结论.
解答:解:(1)由题意得f′(x)=x2+2mx+n=(x+m)2+n-m2
又f(x) 在x=1处取得极值,f′(x)的最小值为-4.
所以 ,解得m=1,n=-3.
所以f′(x)=x2+2x-3,
由f′(x)=x2+2x-3>0得:x>1或x<-3.
∴f(x)的单调递增区间为(-∞,-3),(1,+∞),
由f′(x)=x2+2x-3<0得:-3<x<1.
∴f(x)的单调递减区间为(-3,1);
(2)由题意得f(x)=x3+x2-3x,
f(-4)=,f(-3)=9,f(1)=-
当方程f(x)-c=0在区间[-4,1]上有一根时,c∈[)∪{9},
当方程f(x)-c=0在区间[-4,1]上有两根时,c∈[,9).
点评:此题是中档题.考查利用导数研究函数的单调性和极值问题,以及函数图象的变化情况,体现了数形结合和转化的思想,考查了学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案