精英家教网 > 高中数学 > 题目详情
20.已知幂函数$y=({{m^2}-m-1}){x^{{m^2}-2m-\frac{1}{3}}}$,当x∈(0,+∞)时为减函数,则该幂函数的解析式是${x}^{-\frac{1}{3}}$.

分析 根据幂函数的定义,令m2-m-1=1,求出m的值,再判断m是否满足幂函数在x∈(0,+∞)上为减函数即可.

解答 解:∵幂函数y=(m2-m-1)xm2-2m-$\frac{1}{3}$
∴m2-m-1=1,
解得m=2,或m=-1;
又x∈(0,+∞)时y为减函数,
∴当m=2时,m2-2m-$\frac{1}{3}$=-$\frac{1}{3}$,幂函数为y=x-$\frac{1}{3}$,满足题意;
当m=-1时,m2-2m-$\frac{1}{3}$=$\frac{2}{3}$,幂函数为y=${x}^{\frac{2}{3}}$,不满足题意;
综上,幂函数y=x-$\frac{1}{3}$.
故答案为:${x}^{-\frac{1}{3}}$.

点评 本题考查了幂函数的定义与性质的应用问题,解题的关键是求出符合题意的m值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,$a=2,b=4,cosC=\frac{3}{8}$,则c=(  )
A.$\sqrt{14}$B.$\sqrt{10}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知下列命题:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“(¬p)∧(¬q)为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(1)求数列{an}的通项公式及前n项和Sn
(2)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+2b2+…+2n-1bn(n∈N*),求证:Tn<$\frac{1}{6}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)存在反函数y=f-1(x),若函数$y=f(x)+\frac{1}{x}$的图象经过点(1,2),则函数$y={f^{-1}}(x)-\frac{1}{x}$的图象经过点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知α:1≤x≤3,β:m+1≤x≤m+4,且α是β的充分条件,则实数m的取值范围为[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=(x-1)2(x≤1),则其反函数f-1(x)=1-$\sqrt{x}$(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$f(x)=\frac{3}{{\sqrt{1-x}}}$的定义域是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图:在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点;
(1)证明:EF∥平面PAD;
(2)求三棱锥E-ABC的体积;
(3)求EC与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案