精英家教网 > 高中数学 > 题目详情

【题目】费马点是指三角形内到三角形三个顶点距离之和最小的点。当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为。根据以上性质,函数的最小值为__________

【答案】

【解析】

函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,连接这三个点构成了三角形ABC,由角DOB,角DOC,OD=,OC=,OA=,距离之和为:2OC+OA,求和即可.

根据题意画出图像,

函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,设三角形这个等腰三角形的费马点在高线AD上,设为O点即费马点,连接OB,OC,则角DOB,角DOC,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=距离之和为:2OC+OA=+=2+.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为.

1)若是单调函数,且有零点,求实数a的取值范围;

2)若,求的值域;

3)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2平面ABCDE分别是AC的中点.

求证:平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若从装有个红球和个黑球的口袋内任取个球,则下列为互斥的两个事件是( )

A.“至少有一个黑球”与“都是黑球”B.“一个红球也没有”与“都是黑球”

C.“至少有一个红球”与“都是红球”D.“恰有个黑球”与“恰有个黑球”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2xgx)=(4lnxlnx+bbR).

1)若fx)>0,求实数x的取值范围;

2)若存在x1x2[1+∞),使得fx1)=gx2),求实数b的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.

(1)若一次喷洒1个单位的去污剂,则去污时间可达几天?

(2)若第一次喷洒1个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值?(精确到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,已知直线与曲线交于不同的两点.

1)求直线的普通方程和曲线的直角坐标方程;

2)设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某支上市股票在30天内每股的交易价格(单位:元)与时间(单位:天)组成有序数对落在如图所示的两条线段上.该股票在30天内(包括30天)的日交易量(单位:万股)与时间(单位:天)的部分数据如下表所示:

4

10

16

22

(万股)

36

30

24

18

)根据所提供的图象,写出该种股票每股的交易价格与时间所满足的函数解析式;

)根据表中数据确定日交易量与时间的一次函数解析式;

)若用(万元)表示该股票日交易额,请写出关于时间的函数解析式,并求出在这30天中,第几天的日交易额最大,最大值是多少?

查看答案和解析>>

同步练习册答案