精英家教网 > 高中数学 > 题目详情
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:
日    期 3月1日 3月2日 3月3日 3月4日 3月5日
温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
(1)求这5天的平均发芽率;
(2)从3月1日至3月5日中任选2天,记发芽的种子数分别为m、n,用(m,n)的形式列出所有的基本事件[视(m,n)与(n,m)相同],并求满足“
(8)25≤m≤30
(9)25≤n≤30(10)
”的事件A的概率.
分析:(1)要求种子的平均发芽率,把所有的发芽的种子数相加,除以所有参与实验的种子数,得到发芽的百分率.
(2)由题意知本题是一个古典概型,试验发生包含的事件可以通过列举得到事件数,满足条件的事件也可以在前面列举的基础上得到事件数,根据古典概型概率公式得到结果.
解答:解:(1)由题意知,这五天的平均发芽率
23+25+30+26+16
100+100+100+100+100
=0.24=24%
(2)由题意知,本题是一个古典概型,
m,n的取值情况有(23,25)(23,30)(23,26)(23,16)(25,30)(25,26)
(25,16)(30,26)(30,16)(26,16),共有10个基本事件,
满足条件的“
(8)25≤m≤30
(9)25≤n≤30(10)
”的事件A包含的基本事件为(25,30)(25,26)(30,26)
∴P(A)=
3
10
点评:本题考查概率的意义,考查用列举法解决古典概型问题,是一个典型的概率问题,本题可以作为文科考试的一道解答题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料
日期 3月1日 3月2日 3月3日 3月4日 3月5日
温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
(I)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.
(II)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程
y
=
b
x+
a

(III)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(II)所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了5月1日至5月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日    期 5月1日 5月2日 5月3日 5月4日 5月5日
温差x(°C) 10 12 11 13 8
发芽数y(颗) 23 25 30 26 16
(1)从5月1日至5月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(2)根据5月2日至5月4日的数据,利用相关系数r判断y与x是否具有线性相关关系(参考数据:|r|>0.75时,认为两变量有很强的线性相关;
7
=2.6458

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:

日    期

3月1日

3月2日

3月3日

3月4日

3月5日

温差(°C)

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“m ,n均不小于25”的概率.

(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?

(参考公式:回归直线的方程是,其中,)

查看答案和解析>>

同步练习册答案