精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)

①对任意的x∈(-∞,1),都有f(x)>0;

②存在x∈R,使ax,bx,cx不能构成一个三角形的三条边长;

③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.

【答案】①②③

【解析】

中,利用不等式的性质分析即可,在中,举例a=2,b=3,c=4进行说明,中,利用零点存在性定理分析即可.

中,∵a,b,c△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1),f(x)=ax+bx-cx=cx[(x+(x-1]>cx+-1)=cx>0,故正确;

中,令a=2,b=3,c=4,a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故正确;

中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,

x∈(1,2),使f(x)=0,故正确.

故答案为:①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列选项中,不满足其中任何一个等式的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,半焦距为,离心率,又直线交椭圆于, 两点,中点.

1)求椭圆的标准方程;

2)若,求弦的长;

3)若点恰好平分弦,求实数;

4)若满足,求实数的取值范围并求的值;

5)设圆与椭圆相交于点与点,的最小值,并求此时圆的方程;

6)若直线是圆的切线,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx+m,m∈R.
(1)求函数f(x)的单调区间.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围.
(3)在(2)的条件下,任意的0<a<b,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足

求函数的解析式;

若关于x的不等式上恒成立,求实数t的取值范围;

若函数在区间内至少有一个零点,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.如图,已知,图中的一系列圆是圆心分别为A、B的两组同心圆,每组同心圆的半径分别是1,2,3,,n,.利用这两组同心圆可以画出以A、B为焦点的双曲线. 若其中经过点M、N、P的双曲线的离心率分别是.则它们的大小关系是 (用连接).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

)求椭圆的方程;

)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得? 若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案