精英家教网 > 高中数学 > 题目详情
18.设$\left\{\begin{array}{l}{x={e}^{-t}}\\{y=sint}\end{array}\right.$,则$\frac{{d}^{2}y}{d{x}^{2}}$=$\frac{-sint}{{e}^{-t}}$.

分析 利用导数公式,两次求导,即可得出结论.

解答 解:∵$\left\{\begin{array}{l}{x={e}^{-t}}\\{y=sint}\end{array}\right.$,
∴$\frac{{d}^{2}y}{d{x}^{2}}$=$\frac{(cost)′}{(-{e}^{-t})}$=$\frac{-sint}{{e}^{-t}}$,
故答案为:$\frac{-sint}{{e}^{-t}}$.

点评 本题考查导数知识的运用,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数y=$\sqrt{m{x}^{2}-6mx+m+8}$的定义域是R,则实数m的取值范围是(  )
A.0<m≤1B.0≤m≤1C.0<m<1D.0≤m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线C;$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差中项,若△PF1F2为锐角三角形,则双曲线C的离心率的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1,1+$\sqrt{3}$)C.($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$)D.($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简 a${\;}^{\frac{2}{3}}$•b${\;}^{\frac{1}{2}}$•(2a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{6}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$); 
(2)计算 ($\sqrt{2}$-1)0+($\frac{16}{9}$)${\;}^{\frac{1}{2}}$+8${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(2x+1)的定义域是[-1,3],且f(x)的定义域由f(2x+1)确定,试求f(x)的定义域[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=1o{g_{\frac{1}{2}}}(2{x^2}-ax+3)$在区间[-1,+∞)上是减函数,则实数a的取值范围是(  )
A.(-∞,-5)∪[-4,+∞)B.(-5,-4]C.(-∞,-4]D.[-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(5,6),$\overrightarrow{b}$=(sinα,cosα),已知向量且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=(  )
A.$\frac{5}{6}$B.-$\frac{5}{6}$C.$\frac{6}{5}$D.-$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)是定义在R上的奇函数,且它是减函数,若实数a,b满足f(a)+f(b)>0,则a与b的关系是(  )
A.a+b>0B.a+b<0C.a+b=0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1)市场上某电脑键盘的单价为16元,当购买5个以内(含5个)键盘时,则应付款y(元)与购置数且x(个)的函数解析式为y=16x(0<x≤5,x∈N+).
(2)某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元,销售量就减少5件,若设售价提高x元,则获得利润y元关于x的函数关系式为y=-5x2+500x+20000(0≤x≤200,x∈N).

查看答案和解析>>

同步练习册答案