精英家教网 > 高中数学 > 题目详情
17.已知直线2x+3y+6=0与圆x2+y2+2x-6y+m=0(其圆心为点C)交于A,B两点,若CA⊥CB,求实数m的值.

分析 确定圆心与半径,利用CA⊥CB,可得圆心到直线的距离d=$\frac{\sqrt{2}}{2}$r,即可求实数m的值.

解答 解:圆x2+y2+2x-6y+m=0可化为圆(x+1)2+(y-3)2=-m+10,圆心坐标为(-1,3),半径为$\sqrt{10-m}$
∵CA⊥CB,
∴圆心到直线的距离d=$\frac{|-2+9+6|}{\sqrt{4+9}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{10-m}$
∴m=-16.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知抛物线x2=2ay(a为常数)的准线经过点(1,-1),则抛物线的焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.{an}是等比数列,若a1=2,an=22n-1,求这个数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=x+2与圆x2+y2=4的交点为(0,2)或(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中,a2=6,a3+a6=27.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,且Tn=$\frac{{S}_{n}}{3•{2}^{n-1}}$,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆C:x2+y2=1,直线l:y=kx+2,直线l与圆C交与A,B,若|$\overrightarrow{OA}$$+\overrightarrow{OB}$|<|$\overrightarrow{OA}$$-\overrightarrow{OB}$|(其中O为坐标原点),则k的取值范围是(  )
A.(0,$\sqrt{7}$)B.(-$\sqrt{7}$,$\sqrt{7}$)C.($\sqrt{7}$,+∞)D.($-∞,-\sqrt{7}$)$∪(\sqrt{7,}+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数x2-2x-3≤0,求函数y=2x+2-2•4x的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sin$α=\frac{2}{3}$,α$∈(\frac{π}{2},π)$,求cos($\frac{π}{3}+α$),cos($\frac{π}{3}-α$)

查看答案和解析>>

同步练习册答案