精英家教网 > 高中数学 > 题目详情
等比数列{an}中,公比q=2,log2a1+log2a2+…+log2a10=35,则 a1+a2+…+a10=
 
考点:数列的求和
专题:函数的性质及应用
分析:等比数列{an}中,公比q=2,可得a1a10=a2a9=…=a5a6=
a
2
1
q9
.由log2a1+log2a2+…+log2a10=35,利用对数的运算性质可得log2(a1a2…a10)=log2(a1a10)5=35,化为
a
2
1
29
=27,可得a1.再利用等比数列的前n项和公式即可得出.
解答: 解:∵等比数列{an}中,公比q=2,
∴a1a10=a2a9=…=a5a6=
a
2
1
q9

∵log2a1+log2a2+…+log2a10=35,
∴log2(a1a2…a10)=log2(a1a10)5=35,
a
2
1
29
=27
∴a1=
1
2

∴a1+a2+…+a10=
1
2
(210-1)
2-1
=
1023
2

故答案为:
1023
2
点评:本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x,其中e是自然对数的底数
(1)判断函数f(x)在定义域R上的奇偶性,并证明;
(2)若关于x的不等式f(x)≥mex在[-1,1]上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,2],使得ex0f(x0)<a成立,试判断loga(-2t2+2t)的值的正负号,其中t∈(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b,c,d满足(b+a2•3lna)2+(c•d+2)2=0,且a∈(0,1),则(a•c)2+(b•d)2的最小值为(  )
A、
1
e
B、
2
e
C、
3
e
D、
4
e

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
x2
9
+
y2
4
=1
的两焦点,M为椭圆上的点,若MF1⊥MF2,则△MF1F2的面积为(  )
A、4
B、8
C、4
3
D、8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=(a+bx)n(n?N*
(1)当a=
1
4
,b=2时,展开式前3项的二项式系数和为37,求展开式中二项式系数最大的项的系数;
(2)当时a=0,b=
1
2
,n=2时,y=f(x)与过点K(0,-1)的直线l相交于A,B两点,点A关于y轴的对称点为D.证明:点F(0,1)在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+3(a2+a)lnx-8ax
(Ⅰ)若x=3是f(x)的一个极值点求a的值;
(Ⅱ)若函数f(x)在其导函数f(x)′的单调区间上也是单调的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC的四个顶点均在半径为2的球面上,且AB=BC=CA=2
3
,平面PAB⊥平面ABC,则三棱锥P-ABC的体积的最大值为(  )
A、4
B、3
C、4
3
D、3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的四个不等式:
①a2+b2+c2≥ab+bc+ca;②a(1-a)≤
1
4
;③
a
b
+
b
a
≥2;④(a2+b2)•(c2+d2)≥(ac+bd)2
其中不成立的有
 
 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义两个平面向量的一种运算
a
?
b
=|
a
|•|
b
|sin<
a
b
>,则关于平面向量上述运算的以下结论中,
a
?
b
=
b
?
a

②λ(
a
?
b
)=(λ
a
)?
b

③若
a
b
,则
a
?
b
=0;
④若
a
b
,且λ>0,则(
a
+
b
)?
c
=(
a
?
c
)+(
b
?
c
);
恒成立的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案