分析 (Ⅰ)利用两角差的正切公式求得tan15°的值,由题意利用两个向量的数量积的定义求得(2-$\sqrt{3}$)≤tanθ≤$\sqrt{3}$,由此求得θ的值.
(Ⅱ)利用三角恒等变换化简函数f(θ)的解析式,再利用正切函数、正弦函数的定义域和值域,求得它的最大值
解答 解:(Ⅰ)tan15°=tan(60°-45°)=$\frac{tan60°-tan45°}{1+tan60°tan45°}$=$\frac{\sqrt{3}-1}{1+\sqrt{3}•1}$=2-$\sqrt{3}$.
△ABC中,∵$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为θ,θ∈[0,π),
∵$\overrightarrow{AB}$$•\overrightarrow{BC}$=6,∴AB•BC•cosθ=AB•BC•cosθ=6.
根据6(2-$\sqrt{3}$)≤|$\overrightarrow{AB}$||$\overrightarrow{BC}$|sin(π-θ)≤6$\sqrt{3}$,可得6(2-$\sqrt{3}$)≤AB•BC•sinθ≤6$\sqrt{3}$,
即6(2-$\sqrt{3}$)≤$\frac{6sinθ}{cosθ}$≤6$\sqrt{3}$,即(2-$\sqrt{3}$)≤tanθ≤$\sqrt{3}$,$\frac{π}{12}$≤θ≤$\frac{π}{3}$,即θ∈[$\frac{π}{12}$,$\frac{π}{3}$].
(Ⅱ)函数f(θ)=$\frac{1-\sqrt{2}cos(2θ-\frac{π}{4})}{sinθ}$=$\frac{1-(cos2θ+sin2θ)}{sinθ}$=$\frac{{2sin}^{2}θ-2sinθcosθ}{sinθ}$=2(sinθ-cosθ)=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),
∵θ∈[$\frac{π}{12}$,$\frac{π}{3}$],∴θ-$\frac{π}{4}$∈[-$\frac{π}{6}$,$\frac{π}{12}$],故当θ-$\frac{π}{4}$=$\frac{π}{12}$时,
函数f(θ)取得最大值为2$\sqrt{2}$sin$\frac{π}{12}$=2$\sqrt{2}$sin($\frac{π}{3}$-$\frac{π}{4}$)=2$\sqrt{2}$($\frac{\sqrt{3}}{2}•\frac{\sqrt{2}}{2}$-$\frac{1}{2}•\frac{\sqrt{2}}{2}$)=$\sqrt{3}$-1.
点评 本题主要考查两角差的正切公式,两个向量的数量积的定义,正切函数、正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $-\frac{10}{3}$<λ≤$\frac{9}{4}$ | B. | $-\frac{10}{3}$<λ<$\frac{9}{4}$ | C. | $-\frac{9}{4}$<λ≤$\frac{10}{3}$ | D. | $-\frac{9}{4}$<λ<$\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{1}{4}$,0) | B. | ($-\frac{1}{2}$,-$\frac{1}{4}$) | C. | ($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$) | D. | (-$\frac{1}{2}$,$-\frac{1}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (8,1) | B. | (8,3) | C. | (-1,8) | D. | (7,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{4}$ | D. | -17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com