精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线在第一象限内的点到焦点的距离为

(1)若,过点, 的直线与抛物线相交于另一点,求的值;

(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

【答案】(1);(2) 的长为定值.

【解析】试题分析:(1)根据抛物线的性质可得到焦点的距离为可得出,求出的方程,联立抛物线,故而可得,即可得最后结果;(2)设出直线的方程为,设 ,与抛物线方程联立,运用韦达定理得,由,得,将代入可得的值,利用直线截圆所得弦长公式得,故当时满足题意.

试题解析:(1)∵点,∴,解得

故抛物线的方程为: ,当时,

的方程为,联立可得,

又∵,∴

(2)设直线的方程为,代入抛物线方程可得

,则,①

得:

整理得,②

将①代入②解得,∴直线

∵圆心到直线l的距离,∴

显然当时, 的长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图

(1)依据数据的折线图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.

附:相关系数公式,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的上顶点到右顶点的距离为,左焦点为,过点且斜率为的直线交椭圆于 两点.

(Ⅰ)求椭圆的标准方程及的取值范围;

(Ⅱ)在轴上是否存在定点,使恒为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,点x轴的正半轴上,过点M的直线与抛物线C相交于AB两点,O为坐标原点.

1)若,且直线的斜率为1,求以AB为直径的圆的方程;

2)是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且与另一条直线相切于点.

(1)求圆的标准方程;

(2)已知在圆上运动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,设命题p:函数上单调递减;命题q:函数 上为增函数,

1)若“pq”为真,求实数c的取值范围

2)若“pq”为假,“pq”为真,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)f(0)=-2,且对yR,都有f(x+y)-f(y)=(x+2y+1)x.

1)求f(x)的表达式;

2)已知关于x的不等式f(x)-ax+a+1的解集为AA[2,3],求实数a的取值范围;

3)已知数列{}中, ,且数列{的前n项和为

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左焦点为,点为双曲线右支上的一点,且与圆相切于点为线段的中点, 为坐标原点,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )

A. 至少有一个白球;至少有一个红球 B. 至少有一个白球;红、黑球各一个

C. 恰有一个白球;一个白球一个黑球 D. 至少有一个白球;都是白球

查看答案和解析>>

同步练习册答案