精英家教网 > 高中数学 > 题目详情
9.函数y=$\sqrt{-{x}^{2}+bx+c}$的定义域是{x|2≤x≤3},则b和c的值分别为5,-6.

分析 由题意可得:-x2+bx+c≥0的解集是{x|2≤x≤3},可得2,3是一元二次方程-x2+bx+c=0的两个实数根,利用根与系数的关系即可得出.

解答 解:由题意可得:-x2+bx+c≥0的解集是{x|2≤x≤3},
∴2,3是一元二次方程-x2+bx+c=0的两个实数根,
∴2+3=b,2×3=-c,
解得b=5,c=-6.
故答案分别为:5;-6.

点评 本题考查了函数定义域的求法、一元二次不等式的解集、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则下列叙述中不正确的是(  )
A.x=-$\frac{π}{2}$是函数f(x)的一条对称轴
B.φ的所有取值中,绝对值最小的是$\frac{5π}{4}$
C.($\frac{π}{2}$,0)是函数f(x)的一个对称中心
D.若f(x1)-f(x2)=4,则|x1-x2|的最小值为$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(5,3),B(-1,-5).过线段AB的中点且倾斜角为120°的直线方程(  )
A.y-1=-$\sqrt{3}$(x-2)B.y-1=-$\frac{1}{2}$(x+2)C.y+1=-$\sqrt{3}$(x-2)D.y+1=-$\frac{1}{2}$(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线l的倾斜角是120°,则这条直线的一个法向量为($\sqrt{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于α的方程$\frac{\sqrt{2}}{2}$sin($\frac{π}{4}$+α)+$\frac{\sqrt{6}}{2}$sin($\frac{π}{4}$-α)=2m-3有解,则m的取值范围$\frac{3-\sqrt{2}}{2}$≤m≤$\frac{3+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面内有向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),点M(2x,x)
(1)当$\overrightarrow{MA}$$•\overrightarrow{MB}$取最小值时,求$\overrightarrow{OM}$的坐标;
(2)当点M满足(1)的条件和结论时,求cos∠AMB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(k+1)ax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求实数k的值;
(2)当a>1时,试判断函数f(x)的单调性,并求使不等式f(x2+tx)+f(4-x)>0对任意x∈(1,3)都成立的实数t的取值范围;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)+3m-2在[1,+∞)上的最小值是-4,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|log2(x-1)<1},B={x|21-x<$\frac{1}{2}$}.
(Ⅰ)求A∩B;
(Ⅱ)若集合C={x|a<x<2a+1},且C⊆(A∩B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x≤-1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案