精英家教网 > 高中数学 > 题目详情
17.用数学归纳法证明2n>2n+1,n的第一个取值应是(  )
A.1B.2C.3D.4

分析 根据数学归纳法的步骤,结合本题的题意,是要验证n=1,2,3,命题是否成立;可得答案.

解答 解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;
结合本题,要验证n=1时,左=21=2,右=2×1+1=3,2n>2n+1不成立,
n=2时,左=22=4,右=2×2+1=5,2n>2n+1不成立,
n=3时,左=23=8,右=3×2+1=7,2n>2n+1成立,
因为n≥3成立,所以2n>2n+1恒成立.
所以n的第一个取值应是3.
故选:C.

点评 本题考查数学归纳法的运用,解此类问题时,注意n的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A,B,C的对边分别为a,b,c,若$\sqrt{3}$a=2bsinA,则锐角B的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的非零向量,若8$\overrightarrow{a}+k\overrightarrow{b}$和k$\overrightarrow{a}+2\overrightarrow{b}$共线,则实数k的值为±4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把函数y=sinx-$\sqrt{3}$cosx的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,B=$\frac{π}{3}$,且AB=1,BC=4,则BC边上的中线AD的长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b,c,x,y,z是正数,且a2+b2+c2=1,x2+y2+z2=4,ax+by+cz=2,则$\frac{a+b+c}{x+y+z}$(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,an与Sn满足关系式Sn=3-$\frac{n+3}{n+1}$an(n∈N*).
(Ⅰ)求a1,a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=sin(2x+$\frac{π}{4}$)的图象上各点的纵坐标不变,横坐标变为原来的2倍,再向右平移$\frac{π}{8}$个单位长度,所得到的函数图象的一个对称中心是(  )
A.(π,0)B.($\frac{5π}{16}$,0)C.($\frac{5π}{8}$,0)D.($\frac{7π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于x的不等式ax-b>0的解集是(-∞,1),则关于x的不等式(ax+b)(x-3)>0的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(1,3)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

同步练习册答案