精英家教网 > 高中数学 > 题目详情
8.某种新产品投放市场一段时间后,经过调研获得了时间x(天数)与销售单价y(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{10}({x}_{i}-\overline{x})^{2}$$\sum_{i=1}^{10}({w}_{i}-\overline{w})^{2}$$\sum_{i=1}^{10}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$$\sum_{i=1}^{10}({w}_{i}-\overline{w})({y}_{i}-\overline{y})$
1.6337.80.895.150.92-20.618.40
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}{w}_{i}$.
(Ⅰ)根据散点图判断,$\widehat{y}$=$\widehat{a}$+$\widehat{b}$x与$\widehat{y}$=$\widehat{c}$+$\frac{\widehat{d}}{x}$哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

分析 (I)根据散点图的大体分布是否成直线分布判断;
(II)根据回归系数公式计算y关于w的线性回归方程,再转化为y关于x的回归方程;
(III)求出日销售额,利用二次函数的性质求出结论.

解答 解:(Ⅰ)由散点图可以判断$\widehat{y}$=$\widehat{c}$+$\frac{\widehat{d}}{x}$适合作作价格y关于时间x的回归方程类型;
(Ⅱ)令w=$\frac{1}{x}$,先建立y关于w的线性回归方程,由于d=$\frac{18.40}{0.92}$=20,∴c=37.8-20×0.89=20,
∴y关于w的线性方程为y=20+20w,
∴y关于x的线性方程为y=20+$\frac{20}{x}$;
(Ⅲ)日销售额h(x)=g(x)(20+$\frac{20}{x}$)=-200($\frac{10}{x}$-12)($\frac{1}{x}$+1)=-2000[($\frac{1}{x}$-$\frac{1}{10}$)2-12.1],
∴x=10时,h(x)有最大值2420元,
即该产品投放市场第10天的销售额最高,最高为2420元.

点评 本题考查了线性回归方程的求解及数值预测,函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.用反证法证明命题:“三角形的内角中至少有一个不大于60°”的过程归纳为以下三个步骤:①因为A+B+C>60°+60°+60°=180°,这与三角形内角和为180°相矛盾;②所以一个三角形的内角中至少有一个不大于60°;③假设三角形的三个内角A、B、C都大于60°,正确顺序的序号为(  )
A.③①②B.②③①C.①③②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.i为虚数单位,若$\frac{a}{1-i}$=$\frac{1+i}{i}$,则a的值为-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在极坐标系中,直线ρsin(θ+$\frac{π}{4}$)=2被圆ρ=3截得的弦长为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则当x∈[-1,1]时,函数f(x)的值域为(  )
A.[-1,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足z($\sqrt{7}$+3i)=16i(i为虚数单位),则复数z的模为(  )
A.$\frac{1}{2}$B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-ax+$\frac{a}{x}$,其中a>0.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{3}^{2}}$)(1+$\frac{1}{{4}^{2}}$)…(1+$\frac{1}{{n}^{2}}$)<e${\;}^{\frac{3}{4}}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.小明忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+a(x-1),其中a∈R.
(Ⅰ) 当a=-1时,求证:f(x)≤0;
(Ⅱ) 对任意t≥e,存在x∈(0,+∞),使tlnt+(t-1)[f(x)+a]>0成立,求a的取值范围.
(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

同步练习册答案