【题目】设函数,若对于在定义域内存在实数满足,则称函数为“局部奇函数”.若函数是定义在上的“局部奇函数”,则实数的取值范围是( )
A. [1﹣,1+) B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]
【答案】B
【解析】根据“局部奇函数”的定义可知,函数f(﹣x)=﹣f(x)有解即可,
即f(﹣x)=4﹣x﹣m2﹣x+m2﹣3=﹣(4x﹣m2x+m2﹣3),
∴4x+4﹣x﹣m(2x+2﹣x)+2m2﹣6=0,
即(2x+2﹣x)2﹣m(2x+2﹣x)+2m2﹣8=0有解即可.
设t=2x+2﹣x,则t=2x+2﹣x≥2,
∴方程等价为t2﹣mt+2m2﹣8=0在t≥2时有解,
设g(t)=t2﹣mt+2m2﹣8,对称轴x=,
①若m≥4,则△=m2﹣4(2m2﹣8)≥0,
即7m2≤32,此时m不存在;
②若m<4,要使t2﹣mt+2m2﹣8=0在t≥2时有解,
则,解得﹣1≤m<2,综上:﹣1≤m≤2,故选B
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.
(1)求椭圆的方程;
(2)过点作椭圆的切线,记,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数f(x)满足:对任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=a有两个实数根x1 , x2 , 且满足:﹣1<x1<2<x2 , 求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,又数列{ }(n∈N*)是公差为1的等差数列.
(1)求数列{an}的通项公式an;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,设倾斜角为α的直线: (t为参数)与曲线C: (θ为参数)相交于不同的两点A,B.
(1)若α= ,求线段AB的长度;
(2)若直线的斜率为 ,且有已知点P(2, ),求证:|PA||PB|=|OP|2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f( )=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f( )=﹣f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com