精英家教网 > 高中数学 > 题目详情
19.一个几何体的三视图如图,则该几何体的体积为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥(也可以看成是一个四棱锥与三棱锥的组合体),代入锥体体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,
其底面S=$\frac{1}{2}$(1+2)×1=$\frac{3}{2}$,
高h=1,
故体积V=$\frac{1}{3}Sh$=$\frac{1}{2}$,
故选:D
也可以看成是一个四棱锥与三棱锥的组合体,同样得分.

点评 本题考查的知识点是棱锥的表面积和体积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2+px+3在(-∞,1]上单调递减,则p的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log2$\frac{1-x}{1+x}$
(1)判断f(x)的奇偶性并证明;
(2)若f(3m+1)<f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,圆锥的顶点为P,底面圆O半径为1,圆锥侧面积为$\sqrt{2}π$,AB是圆O的直径,点C是圆O上的点,且$BC=\sqrt{2}$.
(Ⅰ)求异面直线PA与BC所成角;
(Ⅱ)点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1=$\sqrt{2}$,
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(2)在(Ⅰ)的条件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=aex-x有两个零点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=sinωx+$\sqrt{3}$cos(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)在[0,$\frac{π}{4}$]上的最大值为(  )
A.2B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知存在实数a,使得关于x的不等式$\sqrt{2x}-a≥\sqrt{9-5x}$恒成立,则a的最大值为(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若角α的终边经过点(-4,3),则tanα=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

同步练习册答案