精英家教网 > 高中数学 > 题目详情

在矩形ABCD中,已知AB=2,BC=1,在AB,AD,CB,CD上,分别截取AE=AH=CF=CG=x,设四边形EFGH的面积为y.
(1)写出四边形EFGH的面积y与x之间的函数关系式,并给出该函数的定义域;
(2)求当x为何值时y取得最大值,最大值是多少?

解:(1)∵AE=AH=CF=CG,∠A=∠B=∠C=∠D=90°,
∴△AEH≌△CFG,△EBF≌△HDG,
∴y=S矩形ABCD-2S△AEH-2S△EFB==-2x2+3x(0<x≤1).
(2)∵
∴当时,
分析:(1)由关系S四边形EFGH=S矩形ABCD-S△AEH-S△CEF-S△BEF-S△DGH,即可求出表达式;
(2)利用(1)求出的关系式,再利用二次函数的性质即可求出最大值.
点评:用间接的方法求出四边形EFGH的面积和利用二次函数的性质求最值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在矩形ABCD中,已知AD=6,AB=2,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.
(1)求以F、E为焦点,DC和AB所在直线为准线的椭圆的方程.
(2)求⊙H的方程.
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,已知AB=a,BC=b(a>b),在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于x,
(1)将四边形EFGH的面积S表示成x的函数,并写出函数的定义域;
(2)当x为何值时,四边形EFGH的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,已知AD=2AB=2,点E是AD得中点,将△DEC沿CE折起到△D′EC的位置,使平面D′EC⊥平面BEC.
(1)证明:BE⊥CD′;
(2)求点E到平面D′EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,已知AB=3AD,E,F为AB的两个三等分点,AC,DF交于点G;
(I)建立适当的平面直角坐标系,证明:EG⊥DF;
(II)设点E关于直线AC的对称点为E',问点E'是否在直线DF上,并说明理由.

查看答案和解析>>

同步练习册答案