精英家教网 > 高中数学 > 题目详情
5.如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{AB}$=(  )
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 根据向量的几何意义和向量的数量积公式计算即可.

解答 解:∵正四面体ABCD的棱长为1,点E是棱CD的中点,
∴$\overrightarrow{AE}$•$\overrightarrow{AB}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AD}$)•$\overrightarrow{AB}$
=$\frac{1}{2}$$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$•$\overrightarrow{AB}$=$\frac{1}{2}$×1×1×$\frac{1}{2}$+$\frac{1}{2}$×1×1×$\frac{1}{2}$=$\frac{1}{2}$,
故选:D.

点评 本题主要考查向量的数量积运算,要求熟练掌握数量积的公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求侧棱AA1与平面AB1C所成角的正弦值的大小;
(2)已知点D满足$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{x^2}{m}+{y^2}=1$的离心率$e∈(\frac{1}{2},1)$,则m的取值范围是$m>\frac{4}{3}$或$0<m<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为R,且为可导函数,若对?x∈R,总有(2-x)f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),则(  )
A.f(x)>0恒成立B.f(x)<0恒成立
C.f(x)的最大值为0D.f(x)与0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自主招生,是高校选拔录取工作改革的重要环节,通过高考自主招生笔试和面试之后,可以得到相应的高考降分政策;某高中高一学生共有1000人,其中城填初中毕业生750名(称为“城填生“),农村初中毕业生250人(称为“农村生“);为了摸清学生是否愿意参加自主招生,以便安排自主招生培训,拟采用分层抽样的方法抽取100名学生进行调查;
(1)试完成下列2×2联表,并分析是否有95%以上的把握说“是否愿意参加自主招生“与生源有关.
愿意参加不愿意参加合计
城填生502575
农村生101525
合计6040100
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“高富帅”完全会答的有3道,不完全会的有2道,不完全会的每道题她得分S的概率满足:SKIPIF 1<0,假设解答各题之间没有影响.
①对于一道不完全会的题,求“高富帅”得分的均值E(s);
②试求“高富帅”在本次摸底考试中总得分的数学期望.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,已知2bcosC=acosC+ccosA.
(I)求角C的大小;
(II)若b=2,c=$\sqrt{7}$,求a及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,为测量塔高AB,选取与塔底B在同一水平面内的两点C、D,在C、D两点处测得塔顶A的仰角分别为45°,30°,又测得∠CBD=30°,CD=50米,则塔高AB=(  )
A.50米B.25$\sqrt{3}$米C.25米D.50$\sqrt{3}$米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线$l:\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.$(t是参数),曲线C的极坐标方程是ρ=1,那么直线l与曲线C的公共点的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若A(1,2),B(2,3),C(-3,5),则△ABC为(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不等边三角形

查看答案和解析>>

同步练习册答案