精英家教网 > 高中数学 > 题目详情
已知△ABC中,∠A=2∠B,∠C为钝角,且∠A、B、C所对的边为a,b,c的长度均为整数,则△ABC的周长最小值为
 
考点:余弦定理
专题:解三角形
分析:由正弦定理可得:
a
sinA
=
b
sinB
=
c
sinC
,利用倍角公式扩大a=
bsin2B
sinB
=2bcosB,c=
bsin3B
sinB
=3b-4bsin2B=3b-4b(1-cos2B),化为c=
a2
b
-b
.由于A=2B,C=π-A-B=π-3B
π
2
,可得0<B<
π
6
.可得
3
2
<cosB<1
.利用1.732b<a<2b,能取得的最小整数是b=4,a=7,又
a2
b
是整数,因此取得最小值为b=16,a=28.c=33.即可得出.
解答: 解:由正弦定理可得:
a
sinA
=
b
sinB
=
c
sinC

a=
bsin2B
sinB
=2bcosB,c=
bsin3B
sinB
=
b(3sinB-4sin3B)
sinB
=3b-4bsin2B=3b-4b(1-cos2B),
∴c=3b-4b[1-(
a
2b
)2]

化为c=
a2
b
-b

∵A=2B,C=π-A-B=π-3B
π
2
,可得0<B<
π
6

3
2
<cosB<1

∴1.732b<a<2b,能取得的最小整数是b=4,a=7,
c=
a2
b
-b

a2
b
是整数,∴将4与7扩大4倍得到16与28.
c=33.
∴△ABC的周长最小值为16+28+33=77.
故答案为:77.
点评:本题考查了正弦定理、倍角公式、同角三角函数进步关系式、三角函数的单调性、整数的理论,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1•a2•a3…an=n2,则
a3
a5
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|+|x+3|,则不等式f(x)>|x-2|+5的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(4x-x2)的定义域为
 
,值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x=a2-b2,a∈Z,b∈Z},求证:对k∈Z,4k-2∉A,2k-1∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4
(x+1)2,若存在t∈R,只要x∈[1,m](m>1),就有f(x+t)≤x,则m的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-5+
25
x-1
(x>1)
的最小值为n,则二项式(x-
1
x
n展开式中x2项的系数为 (  )
A、15B、-15
C、30D、-30

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱B1C1、B1B的中点,求证:CF⊥平面EAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x,y},B={1,xy},若A=B,求x,y分别为
 

查看答案和解析>>

同步练习册答案