精英家教网 > 高中数学 > 题目详情

【题目】已知点P是长轴长为 的椭圆Q: 上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是 ,求|CD|的最小值.

【答案】
(1)解:∵椭圆Q的长轴长为 ,∴

设P(x0,y0),

∵直线PA与OM的斜率之积恒为 ,∴

,∴b=1,

故椭圆的方程为


(2)解:设直线l方程为y=k(x+1)(k≠0),代入 有(1+2k2)x2+4k2x+2k2﹣2=0,

设A(x1,y1),B(x2,y2),AB中点N(x0,y0),

∴CD的垂直平分线方程为

令y=0,得

,∴ ,∴ =


【解析】(1)利用椭圆Q的长轴长为 ,求出 .设P(x0 , y0),通过直线PA与OM的斜率之积恒为 ,化简求出b,即可得到椭圆方程.(2)设直线l方程为y=k(x+1)(k≠0),代入 有(1+2k2)x2+4k2x+2k2﹣2=0,设A(x1 , y1),B(x2 , y2),AB中点N(x0 , y0),利用韦达定理求出CD的垂直平分线方程,推出 ,利用弦长公式化简,推出|CD|的最小值.
【考点精析】认真审题,首先需要了解椭圆的标准方程(椭圆标准方程焦点在x轴:,焦点在y轴:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①e >2②ln2> ③π2<3π ,正确的命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积S△AOB= 时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)求证:对,直线与圆总有两个不同的交点

(2)是否存在实数,使得圆上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由;

(3)求弦的中点的轨迹方程,并说明其轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为 + =1(a>b>0),双曲线 =1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4

(1)求椭圆C的方程;
(2)设F1 , F2分别为椭圆C的左,右焦点,过F2作直线l(与x轴不重合)交于椭圆于A,B两点,线段AB的中点为E,记直线F1E的斜率为k,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在下列命题中,其中正确命题的序号是.
⑴曲线 必存在一条与 轴平行的切线;
⑵函数 有且仅有一个极大值,没有极小值;
⑶若方程 有两个不同的实根,则 的取值范围是
⑷对任意的 ,不等式 恒成立;
⑸若 ,则 ,可以使不等式 的解集恰为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :直线 与直线 之间的距离不大于1,命题 :椭圆 与双曲线 有相同的焦点,则下列命题为真命题的是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案