精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为
4
4
分析:由等式1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,由此易得答案.
解答:解:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,
当n=1时,3n+1=4,
而等式左边起始为1×4的连续的正整数积的和,
故n=1时,等式左端=1×4=4
故答案为:4.
点评:本题考查的知识点是数学归纳法的步骤,在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.解此类问题时,注意n的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,b>0,n>1,n∈N*.用数学归纳法证明:
an+bn
2
≥(
a+b
2
)n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-
1
n+3
)n
1
2
,求证(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明贝努利(Bernoulli)不等式:如果x是实数,且x>-1,x≠0,n为大于1的自然数,那么有(1+x)n>1+nx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求证:函数f(x)的图象关于点A(1,
4
3
)
中心对称,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)设g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求证:
(ⅰ)请用数学归纳法证明:当n≥2时,1<an
3
2

(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:(cosα+isinα)n=cosnα+isinnα,(其中i为虚数单位)

查看答案和解析>>

同步练习册答案