精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2-(k+1)x+
1
4
k2+1=0
的两根是一个矩形两边的长.
(1)k取何值时,方程存在两个正实数根?
(2)当矩形的对角线长是
5
时,求k的值.
分析:(1)根据一元二次方程根的判别式,方程有两个正实数根,则判别式△≥0,且两根的和与积都是正数,得出关于k的不等式组,求出k的取值范围.
(2)根据勾股定理得到的两根的平方和与根与系数的关系得出关于k的方程,求出k的值并检验.
解答:解:(1)设方程的两根为x1,x2
则△=(k+1)2-4(
1
4
k2+1)=2k-3,
∵方程有两个实数根,∴△≥0,即2k-3≥0,①
k+1>0,②
1
4
k2>0
    ③
∴综上可知k≥
3
2

∴当k≥
3
2
,方程有两个正实数根.
(2)由题意得:
x1+x2=k+1
x1x2=
1
4
k2+1

又∵x12+x22=5,即(x1+x22-2x1x2=5,
(k+1)2-2(
1
4
k2+1)=5,
整理得k2+4k-12=0,
解得k=2或k=-6(舍去),
∴k的值为2.
点评:解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值,本题解题的关键是根与系数的关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程|x2-6x|=a(a>0)的解集为P,则P中所有元素的和可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2mx+m-3=0的两个实数根x1,x2满足x1∈(-1,0),x2∈(3,+∞),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(1-i)x+m+2i=0有实根,则m=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,则
2a+3b
3a
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2px-(q2-2)=0(p,q∈R)无实根,则p+q的取值范围是
(-2,2)
(-2,2)

查看答案和解析>>

同步练习册答案