精英家教网 > 高中数学 > 题目详情

【题目】在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.

1)求这4000名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);

2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?

合格

优秀

合计

男生

720

   

   

女生

   

1020

   

合计

   

   

4000

附:

pk2k0

0.010

0.005

0.001

k0

6.635

7.879

10.828

【答案】12)见解析,有99%的把握认为有关.

【解析】

1)利用频率分布直方图,由每一组数据的中点值乘以该组的频率,进行求和即可求出这4000名考生的竞赛平均成绩

2)计算70分以上的频率和频数,由此填写列联表,并由表中数据求出,然后对照临界值判断即可.

1)由题意,得:

中间值

45

55

65

75

85

95

概率

0.1

0.15

0.2

0.3

0.15

0.1

4000名考生的竞赛平均成绩.

2

由题意70分以上的频率为

频数为

70分及以下为

由此填写列联表如下:

合格

优秀

合计

男生

720

1180

1900

女生

1080

1020

2100

合计

1800

2200

4000

由表中数据可得,

99%的把握认为有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ26ρcosθ+50,曲线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程,并说明是什么曲线?

2)若曲线C1C2相交于AB两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点、点及抛物线.

1)若直线过点及抛物线上一点,当最大时求直线的方程;

2轴上是否存在点,使得过点的任一条直线与抛物线交于点,且点到直线的距离相等?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AB=AD=2BC=2BCADABAD,△PBD为正三角形.且PA=2

1)证明:平面PAB⊥平面PBC

2)若点P到底面ABCD的距离为2E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

1)求椭圆的方程;

2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若上恒成立,求实数的取值范围;

(3)在(2)的条件下(提示:可以用第(2)问的结论),任意的,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2ρ24ρcosθ+30

1)求曲线C1的一般方程和曲线C2的直角坐标方程;

2)若点P在曲线C1上,点Q曲线C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下所示.

1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

2)若按分层抽样的方法从年龄在以及内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽取的3人中,年龄在内的人数为,求的分布列以及数学期望.

查看答案和解析>>

同步练习册答案