精英家教网 > 高中数学 > 题目详情
5.计算求值sin70°cos50°+sin20°sin50°=$\frac{\sqrt{3}}{2}$.

分析 由条件利用诱导公式、两角和的正弦公式,求得所给式子的值.

解答 解:sin70°cos50°+sin20°sin50°=sin70°cos50°+cos70°sin50°=sin(70°+50°)=sin120°=sin60°=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查两角和的正弦公式,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-m|,关于x的不等式f(x)≤3的解集为[-1,5]
(Ⅰ)求实数m的值;
(Ⅱ)若实数a、b、c满足a-2b+c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x3-a的图象不经过第二象限,则实数a的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在一次绘画展览中,组委会要求把3幅国画,2幅油画,一幅水墨画挂在一起,并且要求同种画必须相邻,3幅国画必须挂在中间,有多少种挂法?(  )
A.24种B.12种C.2种D.6种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥平面ABCD,SA=$\sqrt{2}$AB,点E在棱SC上.
(Ⅰ)若SA∥平面BDE,求证:AC⊥平面BDE;
(Ⅱ)在(Ⅰ)的条件下,求AD与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=(sinωx+cosωx)2+2$\sqrt{3}$cos2ωx(ω>0)的最小正周期为$\frac{2π}{3}$.
(1)求ω;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移$\frac{π}{2}$个单位长度得到,求函数y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2(cosθ+sinθ),曲线C2的参数方程为$\left\{\begin{array}{l}{x=a+4t}\\{y=4t}\end{array}\right.$(t为参数,a∈R).
(1)写出曲线C1的直角坐标方程;
(2)若曲线C1与C2有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+1.
(1)求f(x)的值域;
(2)写出f(x)的单调增区间;
(3)若x∈[0,π],求使得f(x)=1成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合M={x|y=ln(1-x)},N={y|y=ex,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

同步练习册答案